Abstract:
A rotary compressor includes: a compressing unit that includes an annular cylinder, an end plate which has a bearing unit and a discharge valve unit and closes an end portion of the cylinder, an annular piston which is fit in an eccentric portion of a rotation shaft supported in the bearing unit, performs an orbital motion inside the cylinder along a cylinder inner wall of the cylinder, and forms an operation chamber together with the cylinder inner wall, and a vane which protrudes from the inside of a vane groove of the cylinder to the inside of the operation chamber, comes into contact with the annular piston, and partitions the operation chamber into an inlet chamber and a compression chamber. The vane is formed of steel and has a diamond-like carbon layer formed on a sliding surface with respect to the annular piston. The annular piston is formed of Ni-Cr-Mo cast iron to which 0.15 wt% to 0.45 wt% of phosphorus is added, or is formed of cast iron or steel and has an iron nitride layer formed on an outer circumferential surface thereof.
Abstract:
An iron-base sintered part having high density and totally enhanced strength, toughness and abrasion resistance, a manufacturing method of the iron-base sintered part, and an actuator are disclosed. The iron-base sintered part is formed by an iron-nickel-molybdenum-carbon-based sintered alloy, has density of 7.25 g/cm 3 or more, and has a carburization quenched structure. A method for manufacturing the iron-base sintered part includes a molding process of charging a raw mixture powder of an iron-nickel-molybdenum-based metal powder and a carbon-based powder into a cavity of a molding die and compressing the raw powder in the cavity to form a consolidation body, a sintering process of sintering the consolidation body at a sintering temperature to form a sintered alloy, and a carburization quenching process of heating the sintered alloy in a carburization atmosphere and quenching the heated alloy.
Abstract:
A semi-spherical shoe 1 includes an end face 1B which is disposed in sliding contact with a swash plate 3 and a semi-spherical surface 1A which is disposed in sliding contact with a semi-spherical recess 2A formed in a piston 2. A spherical recess 1C is formed in the top portion of the semi-spherical surface 1A to define a space 4 which serves as a reservoir of lubricant oil between the spherical recess 1C and the semi-spherical recess 2B. If the volume of the space 4 which serves as a reservoir of lubricant oil is increased, an accumulation of abraded power in the spherical recess 1C which forms the space can be prevented in a favorable manner.
Abstract:
Die vorliegende Erfindung betrifft eine Schutzschicht (100) für ein Bauteil (102), das ein erstes Material mit einem ersten Ruhepotential (211) aufweist. Die Schutzschicht (100) weist ein zweites Material auf, das ausgebildet ist, um eine Schutzwirkung der Schutzschicht zu bewirken und weist ein zweites Ruhepotential auf. Die Schutzschicht (100) weist ferner ein drittes Material mit einem dritten Ruhepotential auf, wobei das dritte Material ausgebildet ist, um eine Potentialdifferenz zwischen dem ersten Ruhepotential und einem vierten Ruhepotential der Schutzschicht zu verringern, wobei das vierte Ruhepotential von dem zweiten und dem dritten Ruhepotential abhängig ist.
Abstract:
Die vorliegende Erfindung betrifft einen legierten perlitisch-ferritischen Stahl mit der folgenden Zusammensetzung, angegeben jeweils in Gew.-%: Kohlenstoff : 0,35 - 0,50; Silizium: 0,15 - 0,80; Mangan: 1,20 - 2,00; Phosphor: 0,00 - 0,0025; Stickstoff : 0, 010 - 0,035; Chrom: 0,00 - 0,50; Molybdän: 0,00 - 0,050; Nickel: 0,00 - 0,15; Kupfer: 0,00 - 0,40; Vanadium: 0,13 - 0,40; Titan: 0,001 - 0,004; Aluminium: 0,00 - 0,04; Niob: 0,00 - 0,05; wobei mindestens zwei der Elemente Vanadium, Aluminium und Niob enthalten sind. Der Stahl findet Verwendung für ein Bauteil für Verbrennungsmotoren, insbesondere für Kolben oder Kolbenteile.
Abstract:
A sliding device, comprising a semi-spherical shoe (1) having a semi-spherical surface (1A) and a flat end face (1B), the semi-spherical surface (1A) further comprising a slidable contact part (1a) in slidable contact with a semi-spherical recessed part (2B) of a piston (2) and an induction part (1b) positioned on a top part side (recessed part 1C side) of the slidable contact part (1a), wherein a sphere diameter (D2) of the induction part (1b) is increased over a sphere diameter (D1) of the slidable contact part (1a), whereby a clearance (8) is produced between the induction part (1b) and the semi-spherical recessed part (2B) of the piston (2) opposed to the induction part, lubricating oil accumulated in a space part (4) between the semi-spherical recessed part (2B) and the recessed part (1C) of the semi-spherical shoe (1) is led into the slidable contact part (1a) through the clearance (8), and thus the sliding characteristic can be improved more than before.
Abstract:
In a fluid transfer device (10) that includes a housing (12), a rotor (16) rotatably mounted in the housing (12) and having a bore (24) and at least one piston (30) slidingly mounted in the bore (24), a port plate (42) that includes a body portion (44) mountable in the housing (12) and formed from a first material and a wear layer (56) formed of a second material, different from the first material, attached to the body portion (44) and adapted to contact the rotor (16). Also a fluid transfer device (10) including such a port plate (42).
Abstract:
A semi-spherical shoe (1), comprising an end face (1B) in slidable contact with a swash plate (3) and a semi-spherical surface (1A) in slidable contact with a semi-spherical recessed part (2A) of a piston (2), wherein, because a spherical recessed part (1C) is formed at the top part of the semi-spherical surface (1A), a space part (4) accumulating lubricating oil is formed between the spherical surface recessed part (1C) and the semi-spherical recessed part (2A), whereby, even if the volume of the space part (4) holding lubricating oil is increased, it can be prevented satisfactorily that abrasive powder is deposited in a spherical recessed part (8) forming the space part (4).