Abstract:
A method of brazing stainless steel components to form a complex shape such as an impeller. The method includes the steps of providing the stainless steel components shaped and formed from a selected stainless steel alloy; providing a brazing alloy having a selected composition and compatibility with stainless steel; heating the stainless steel components and brazing alloy for a controlled time to a liquidus temperature to effect brazing; cooling the stainless steel components and brazing alloy to a quench temperature substantially lower than the liquidus temperature of the brazing alloy to provide a tensile strength of greater than about 20 Ksi in the brazing alloy; and quenching the assembly from the quench temperature to a temperature of less than about 400 DEG F in a given time to provide a brazed assembly free of distortion and cracks with desired mechanical properties in the stainless steel components by virtue of the thermal treatment.
Abstract:
Conventional direct-injection internal combustion engines having a fuel injector with multiple fuel spray orifices will not completely ignite and burn relatively lower-cetane-number alternative fuels such as 100 percent methanol or ethanol. That is because the fuel spray injection pattern, per se, usually cannot carry or propagate a flame to all the injected fuel which is typically made up of individual fuel streams which are separated by sectors of fuel-deficient intake air. The present fuel combustion system (10) includes a multiple-orifice fuel injector (22), a baffle (138) having a concave surface (146), and a fuel ignition-initiating device (26) such as glow plug positioned generally in spaced relation between the fuel injector (22) and the convave surface (146). The baffle (138) intercepts and temporarily maintains a stoichiometric preselected portion (34, 38) of at least one, and preferably two, fuel streams (102, 106) in ignitable proximity to the fuel ignition-initiating device (26) to positively start a localized flame (42) of burning fuel. The baffle (138) controlledly reflects and rapidly directs the resultant expanding flame (42) of burning fuel to all of the remaining fuel steams (110) so that they are interconnectedly bridged with the flame (42) and thereby positively ignited.
Abstract:
An apparatus (100) includes a first component (102) having a first surface (106) and a second component (104) having a second surface (110). The first surface includes sputtered gold, and the second surface includes a stainless steel alloy. The first surface is configured to contact the second surface, and one of the components is configured to move against another of the components. The stainless steel alloy could consist of a UNS 21800/AISI Type S21800 metal. The sputtered gold could include ion sputtered gold, and the sputtered gold could have a thickness of about 1 micron. The first component could include a first blade (306) of an adjustable aperture mechanism, where the adjustable aperture mechanism also includes a second blade (308). The second component could include a first plate (310) of the adjustable aperture mechanism, where the adjustable aperture mechanism further includes a second plate (312). The blades can be configured to move within a space between the plates.
Abstract:
냉매 누설을 개선하여 압축기의 성능 향상을 도모하는 것과 내구성을 개선하여 신뢰성의 향상을 도모하면서, 고 효율적인 압축기를 제공하는 것을 목적으로 하는 것이며, 압축기의 내부에 압축 공간이 구성되는 실린더로 구성된 압축 요소와, 실린더 내의 압축 공간에 연통하는 흡입 포트 및 토출 포트와, 실린더의 개구를 폐색하는 지지 부재와, 지지 부재에 형성된 베어링으로서의 주 베어링에 지지가 되어 회전하는 회전축과, 회전축의 축 방향으로 교차하는 일면이 상사점과 하사점 사이에서 연속하여 경사지는 동시에, 실린더 내에 배치되어 회전축에 의해 회전 구동되어, 흡입 포트로부터 빨아 들여진 유체를 압축하여 토출 포트로부터 토출하는 압축 부재와, 흡입 포트와 토출 포트 사이에 배치되어 압축 부재의 일면에 접촉하여 실린더 내의 압축 공간을 저압실과 고압실로 구획하는 베인과, 압축 부재와는 반대측의 베어링(주 베어링) 단부에 설치되어, 회전축에 접촉하는 축 밀봉 시일을 구비한 것을 요지로 한다. 압축기, 실린더, 압축 요소, 흡입 포트, 토출 포트, 지지 부재, 베어링, 압축 부재, 베인