Abstract:
A hyperspectral detection system of luminescence from solid phase samples that are stimulated with radiation sources. includes an observation region, a sample holder configured to hold one or more solid-phase samples, at least one radiation source configured to irradiate the observation region, and a collector configured to collect the radiation emitted through or reflected by the sample upon irradiation by the at least one radiation source. The collector has a magnification factor value (M) equal to or lower than 20, and has a numerical aperture value equal to or higher than 0.25. A multichannel filter is configured to selectively filter the wavelength of the radiation collected by the collector, and an image sensor is configured to receive the filtered radiation and generate an image that is a two-dimensional map of the sample.
Abstract:
A system comprising a light source, and a retention device configured to receive and retain a sample for measurement. The system includes a detector. An optical path couples light between the light source, the sample when present, and the detector. An optical objective is configured to couple light from the light source to the sample when present, and couple reflected light to the detector. A controller is configured to automatically control focus and/or beam path of the light directed by the optical objective to the sample when present. The system includes a spatially variable filter (SVF) positioned in the optical path. The SVF is configured to have spectral properties that vary as a function of illuminated position on the SVF.
Abstract:
An optical analysis tool includes an integrated computational element (ICE). The ICE includes a plurality of layers stacked along a first axis. Constitutive materials of the layers are electrically conductive and patterned with corresponding patterns. An arrangement of the patterns with respect to each other is related to a characteristic of a sample.
Abstract:
A spectroscope used for a microspectroscopic system includes: a collimating optical system that causes signal light to be substantially collimated light; spectroscopic optical systems and each of which includes at least one of each of spectral elements and in which a wavelength band for spectral separation varies depending on an incident angle of the signal light; at least one of each of optical receivers that detect the signal light spectrally separated by the spectroscopic optical systems; a mechanism that varies the incident angles of the signal light on the spectral elements; and a controller unit that determines the incident angles of the signal light on the spectral elements in accordance with the wavelength band for spectrally separating the signal light and controls the mechanism so as to attain the incident angles.
Abstract:
A tunable light source system with wavelength measurement capability for a hyper-spectral imaging system is disclosed. A method includes reference filtering a portion of a tunable light beam while tuning the center wavelength, detecting with at least one photodetector the reference-filtered tunable light beam and generating therefrom at least one detector signal that varies with the center wavelength, and determining a tunable center wavelength based on the at least one detector signal.
Abstract:
A microscope spectrometer in which, when an excitation light from a light source illuminates a sample, a light emitted from the sample that enters a microscope is analyzed, may include: a first optical means that forms the light emitted from the sample as a parallel beam; a first variable bandpass filter means having a variable wavelength passband that transmits incident light, which of the parallel beam of incident light, is light of a pre-established wavelength passband; a two-dimensional array light detection means that images the light in the wavelength passband; and a control means that controls the timing of the imaging by the two-dimensional array light detection means and, in accordance with the timing, changes the wavelength passband of the first variable bandpass filter means.
Abstract:
Embodiments of the present invention provide an optical splitting device, an optical multiplexing device and method, and an optical add-drop multiplexer, which relate to the technical field of communications, and are invented for improving the performance and decreasing the cost. The optical splitting device includes a substrate, where an anti-reflective coating is disposed on an upper surface of the substrate and a filter membrane is disposed at a lower surface of the substrate; and further includes a light redirecting portion disposed opposite to the filter membrane. An optical signal is incident to the filter membrane at a first specified angle, a light wave of a first wavelength in the optical signal penetrates the filter membrane, so that the light wave of the first wavelength is separated from the optical signal.
Abstract:
The object is to easily expand a variable range of selective wavelengths without enlarging a device. A spectral device 1 of the present invention includes four band pass filters 11a to 11d through which a light L2 from a light source 3 is selectively transmitted within a wavelength range according to an incident angle of the light L2, and a tabular rotary table 10 in which the band pass filters 11a to 11d are installed upright on a principal surface 10a, and which is made rotatable around a rotational center C1 along the principal surface 10a, and the four band pass filters 11a to 11d are respectively disposed so that optical incidence planes 12 or optical emission planes 13 are inclined with respect to lines connecting the rotational center C1 on the principal surface 10a of the rotary table 10 and center points 15a and 15d of the bandpass filters 11a to 11d.
Abstract:
An imager (200) including a spatially varying optical element (204) which moves while the imager records a sequence of images. The optical element (204) can be an intensity reduction filter, a spectral or polarization filter, or a refractive or reflective element. Because the optical element (204) moves between frames, each scene portion is captured under a range of imaging conditions. A spatially varying intensity reduction filter enables imaging of each scene portion using multiple, different exposure to generate a high dynamic range image. A spatially varying spectral or polarization filter enables measurement of the spectral or polarization characteristics of radiation from each scene portion. A refractive or reflective element enables imaging of scene portions under various focal characteristics, thereby providing depth information and producing an image which is focused everywhere. A refractive or reflective element is used to apply different vertical and/or horizontal shifts to the different frames, thereby generating an enhanced-resolution image.