Abstract:
A passive quadrature phase detection system for coherent fiber systems includes first and second optical detectors positioned to receive an output signal from the output end of an optical signal apparatus such as an interferometer, or the like. The optical signal from the apparatus includes light propagating in two propagation modes. As the light propagates away from the output end of the apparatus from the near field to the far field, the light in the two modes undergoes a relative phase shift of .pi./2 in accordance with the Guoy effect. The two detectors are positioned such that the first detector detects the intensity of light resulting from the interference between the two modes in the near field of the output signal, and such that the second detector detects the intensity of light resulting from the interference between the two modes in the far field of the output signal. The additional .pi./2 phase difference introduced between the two modes as the light propagates from the near field light to the far field causes the detected light intensities to be in phase quadrature. Electrical signals proportional to the detected light intensities can be processed to determine changes in the phase difference between the two modes within the apparatus. In preferred embodiments, the detection of the near field light intensity is accomplished at a position optically displaced from the output end of the apparatus.
Abstract:
Ultrasonic surface examination, of interest in a variety of manufacturing and maintenance situations, is facilitated by a method which involves localized sensing of a surface wave by optical-fiber interferometry. The method is particularly applicable for examination of surfaces in confined spaces and wherever line-of-sight examination is difficult.
Abstract:
An incident light field is applied to the two separate front fiber faces of a pair of identical optical fibers which are initially held in a common plane. One fiber face is always kept stationary. The other fiber face may be moved either laterally in a plane common to the stationary face, or longitudinally into and out of the common plane. The output end of the device comprises two separate rear fiber faces that are held in a common plane. These faces are stationary. There is no lateral or longitudinal motion of one relative to the other. The light emerging from these two faces interferes in the far field. Straight line interference fringes whose spacing depends upon the lateral separation of the rear fiber faces are formed. The fringe modulation, however, depends upon the relative position of the front fiber faces. This modulation changes as one front face is scanned either laterally or longitudinally. The modulation changes with such motion is related to the degree of spatial or temporal coherence of the incident light field.
Abstract:
A fiber stellar interferometer having a pair of adjustably movable focusing lenses, a pair of monomode optical fibers, a block of electro-optic material defining a pair of optical paths, means for controlling the effective path length of one of the optical paths and an intensity detector. Electromagnetic radiation emanating from a source, such as a star, is received at two separate locations by the focusing lenses which direct this electromagnetic radiation into two separate beams which are focused into each of the pair of monomode fibers, respectively. The monomode fibers direct these two beams into respective optical paths within the electro-optic block of material. The outputs from the two optical paths are combined and received by the intensity detector. Varying the effective path length of one of the optical paths alters the phase of the beam passing therethrough. As a consequence thereof the intensity of the output received by the detector varies accordingly. These varying intensities can be utilized to determine the size and shape of the source by conventional stellar intensity interferometer techniques.
Abstract:
A device for measuring point diffraction interferometric wavefront aberration having an optical source, an optical splitter, a first light intensity and polarization regulator, a phase shifter, a second light intensity and polarization regulator, an ideal wavefront generator, an object precision adjusting stage, a measured optical system, an image wavefront detection unit, an image precision adjusting stage, and a data processing unit. A method for detecting wavefront aberration of the optical system by using the device is also disclosed.
Abstract:
Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.
Abstract:
A waveguide spectrum analyser comprises an input waveguide (10) for receiving a beam of electromagnetic radiation to be spectrally analysed, a plurality of output waveguides (14, 16) which are single mode for wavelengths longer than a certain minimum, a substantially wavelength independent splitter (18) for splitting the input radiation between the single-mode output waveguides, and an array (24) of radiation-sensitive detector elements (30). Each output waveguide has a respective exit port (20, 22) facing the detector array so that radiation from the exit port is diffracted onto the array. The separation of the exit ports and the distance to the detector array is selected such that at least for a range of wavelengths longer than the certain minimum a plurality of interference fringes are produced at the array each extending across sufficient detector elements to allow spatial sampling of the fringes above the Nyquist rate. Data processing means (26) is provided for sampling the detector array to capture an image of the fringes and transforming the captured image data to the frequency domain, preferably using HTP and/or DFTS processing techniques.
Abstract:
Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.
Abstract:
It is the case of an interferometric measuring arrangement for superimposing at least two light waves, with a first coupling means for coupling the light waves coming from a light source into a sample arm and into a reference arm, and with a second coupling means for superimposing the light waves coming from the reference arm and the sample arm, which are led to at least one detector. The light waves at least within the reference arm are exclusively led in at least one fiber guide which they do not leave on their path between the coupling means, and with which the sample arm extends on both sides of the first coupling means.
Abstract:
An apparatus for measuring the wavelength, optical power, and an optical signal-to-noise ratio (OSNR) of each optical signal in wavelength-division-multiplexing optical communication includes: elements for splitting a part of wavelength-division-multiplexed (WDM) signals, elements for amplifying the WDM signals and generating spontaneous emission light simultaneously, elements for reflecting a predetermined section of the spontaneous emission light and generating an optical reference signal, and elements for combining the optical reference signal with the part of the WDM signals split by the splitting elements and generating a combined light. The apparatus has components for filtering the combined light at a fixed temperature and generating a waveform which is the same as an optical spectrum of the combined light in the time domain. The apparatus includes elements for converting the waveform into an electrical signal and components for signal processing that measure the wavelength, the optical power, and the OSNR of the WDM signals.