Abstract:
A portable testing device includes a housing with an integrated touchscreen display and a receptacle in which a sample holder containing a biological sample and reagent mixture can be placed. The portable testing device further includes an optical assembly positioned in the housing, an electronic assembly that is configured to receive data from the optical assembly and transmit it for display on the touchscreen display, and a power supply in the housing to power the portable testing device. The optical assembly includes an excitation filter that extends across the entire optical assembly and an emission filter that extends across the entire optical assembly.
Abstract:
Thermally controlled enclosures that can be used with gas analyzers are described. The enclosures incorporate one or more phase changing materials that buffer ambient and internal heat loads to reduce the power consumption demand of mechanical or electronic heating apparatus. Maintenance of gas analyzer equipment at a consistent temperature can be important to achieving stable and reproducible results. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
L'invention concerne un procédé de contrôle du formage de verre plat par écoulement de verre fondu sur une nappe d'étain liquide présent dans une cuve de formage dans lequel on mesure une grandeur caractéristique du formage au-dessus de la surface du verre en cours de formage à l'aide de faisceaux générés par au moins un analyseur basé sur la spectroscopie d'absorption, dans lequel les faisceaux de lumière générés par l'analyseur forment un réseau au-dessus de la surface du verre. L'invention concerne également un dispositif utilisable pour la mise en œuvre de ce procédé comprenant un bras supportant un caisson comprenant un moyen de rétroréflexion capable de recevoir un faisceau de lumière et de le renvoyer dans le sens opposé parallèlement au chemin optique incident.
Abstract:
The apparatus comprises a pump (1) for sucking the liquid (5), a filter (3) with two outlets (8 and 9), outlet (8) for draining and outlet (9) for filling the cell (12). Interferometer measurements are made at a temperature between 35° and 50 °C (fluctuation 0.2 °C) and with a maximum relative humidity of 0.2 %. Absorbance curves a(f) are determined with respect to the matrix and the concentrations of components to be assayed are calculated by means of standard equations.
Abstract:
Optical techniques for determining thermal properties of materials are described. Optical techniques include Raman scattering and thermal properties include relative length change and coefficient of thermal expansion. Correlations of features of bands observed in the Raman spectra of several glasses with thermal properties of the glasses are demonstrated. The technique provides a convenient method for determining thermal expansion properties of materials.
Abstract:
Systems (290) of the present disclosure are directed to detecting species within a fluid, e.g. for multi-gas analysis, using a multi-pass absorption cell (220) and a spectrometer (270). The absorption cell includes a plurality of mirrors (e.g. 230, 240, 250) arranged in a manner such that a detection light traverses multiple passes through the fluid within the absorption cell. In some implementations, the detection light is reflected by the plurality of mirrors to form optical paths in more than one plane. The system also includes an electronic unit, e.g. data processing unit 280, configured to receive and process spectral data from the spectrometer. In some implementations, the electronic unit communicates with at least one computational unit over a communication interface to send a portion of the spectral data for processing. The electronic unit may also receive processed data from the computational unit.
Abstract:
A chemical and/or biochemical apparatus (10) for receiving a plurality of reaction vessels in which chemical and/or biochemical reactions may take place includes a thermal mount (14) having a plurality of wells (26) for receiving the reaction vessels (12), a thermal module (16) having a first side thermally coupled to the thermal mount (14), a first heat sink (18) thermally coupled to a second side of the thermal module, the heat sink (18) having a body and a plurality of thermally conductive fins (32) extending outwards from the body of the first heat sink (18), and a printed circuit board (54) having electronic components for controlling at least the thermal module (16), an excitation light source (62), and a light sensor (52). A first set of light waveguides (60) is provided for delivering excitation light to a reaction vessel, and a second set of light waveguides (38) is provided for receiving light from a reaction vessel and for delivering the light to the light sensor (52). The first heat sink (18) comprises an interior space (5) and the printed circuit board (54), the excitation light source (62), the light sensor (52) and the light waveguides (38, 60) are arranged within the interior space (5).