Abstract:
Optical systems are provided. One such optical system includes an optical source that propagates a source beam of light. A diffracting component is optically coupled to the optical source and is operative to receive the source beam and produce a diffracted beam. A target is located to receive the diffracted beam. Additionally, a compensating system repositions at least one of the optical source, the diffracting component, and the target in response to a detected change in refractive index of a medium through which the diffracted beam propagates so that the diffracted beam continues to be received by the target. Methods and other systems also are provided.
Abstract:
A bi-directional photoacoustic gas sensor includes a first photoacoustic cell, where an electromagnetic radiation source emits radiation to interact with an external gas and generate pressure waves that are detected by a MEMS diaphragm. A second photoacoustic cell has an interior volume and acoustic compliance that corresponds to the interior volume and acoustic compliance of the first photoacoustic cell. Processing circuitry within a substrate uses a first acoustic signal, received by the first photoacoustic cell, and a second acoustic signal, received by the second photoacoustic cell, to determine a bi-directional response of the gas sensor to remove noise and improve the sensor's signal-to-noise ratio.
Abstract:
Apparatus for determining concentration of a targeted gas in environmental air, the apparatus includes a non-dispersive infrared (NDIR) sensor, a pressure sensor coupled in fluid communication with an interior of the NDIR sensor; and a processor. The processor is configured to receive pressure data from the pressure sensor based on gas pressure within an interior of the NDIR sensor, receive a target-gas concentration signal from the NDIR sensor, and produce a pressure-compensated concentration signal based on the target-gas concentration signal, a predetermined reference pressure and the pressure data from the pressure sensor.
Abstract:
A method of using a spectrometer to produce corrected diamond Attenuated Total Reflectance (ATR) spectral data includes acquiring, using the spectrometer, an initial set of ATR spectral data for a sample pressed into contact with a diamond ATR crystals; numerically matching, using the spectrometer, a pressure dependent diamond artefact reference spectrum to a corresponding pressure dependent diamond artefact in the initial set of ATR spectral data; and numerically subtracting out the numerically matched pressure dependent diamond artefact reference spectrum from the initial set of ATR spectral data to yield a corrected set of ATR spectral data for the sample for output by the spectrometer.
Abstract:
A sensor unit is disclosed which includes a sensor and an information module. The sensor exhibits an optical behavior dependent on at least one variable of a sample. Sensor related information can be emitted by the information module as optical radiation. In embodiments the sensor related information includes calibration data for the sensor. The sensor related information may additionally include identification data for the sensor. In embodiments the information module measures at least one ambient parameter, and emits the measurement value in an optical signal. The measurement value is taken into account when determining at least one variable of a sample by means of the sensor unit. In embodiments the information module may also transmit status information of the sensor unit. Furthermore a method for determining a variable of a sample with a sensor unit and a measurement system is disclosed.
Abstract:
A method of determining a concentration of a gas in a sample and/or the composition of a gas using a spectrometer comprises the transmitting of radiation whose wavelength substantially continuously runs through a wavelength range, wherein the continuous running through of the wavelength range is overlaid by a wavelength modulation; the measuring of an absorption signal from the absorption of the radiation by the gas as a function of the wavelength of the radiation; the converting of the absorption signal into a first and a second derivative signal; the deriving of a first measured gas concentration value from the first derivative signal and of a second measured gas concentration value from the second derivative signal; and the determining of the concentration and/or the composition of the gas from at least the first measured gas concentration value, wherein the wavelength modulation is adapted in response to a change of a state variable of the gas such that a ratio between the first measured gas concentration value and the second measured gas concentration value is kept substantially constant.
Abstract:
A defect inspecting apparatus of the invention solves a problem that in a defect inspecting apparatus, because of improving detection sensitivity of a microscopic defect by reducing a detection pixel size, a focal depth becomes shallow, a height of imaging is varied due to environmental change and the detection sensitivity of a defect becomes unstable. This apparatus comprises an XY stage, which carries a substrate to be inspected and scans in a predetermined direction, and a mechanism having a system of irradiating a defect on the inspected substrate at a slant and detecting the defect by a detection optical system disposed on the upper side, which corrects a height of imaging in real time for change in temperature and barometric pressure in order to keep the imaging in a best condition.
Abstract:
A system includes a light source, a detector, at least one pressure sensor, and a control unit. The light source emits light at a wavelength substantially corresponding to an absorption line of a target gas. The detector is positioned to detect the intensity of light emitted from the light source that has passed through the target gas. The pressure sensor detects the pressure of the target gas. The control circuit is coupled to the detector and the light source to adjust the modulation amplitude of the light source based on the pressure detected by the at least one pressure sensor. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
A defect inspecting apparatus of the invention solves a problem that in a defect inspecting apparatus, because of improving detection sensitivity of a microscopic defect by reducing a detection pixel size, a focal depth becomes shallow, a height of imaging is varied due to environmental change and the detection sensitivity of a defect becomes unstable. This apparatus comprises an XY stage, which carries a substrate to be inspected and scans in a predetermined direction, and a mechanism having a system of irradiating a defect on the inspected substrate at a slant and detecting the defect by a detection optical system disposed on the upper side, which corrects a height of imaging in real time for change in temperature and barometric pressure in order to keep the imaging in a best condition.
Abstract:
A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.