Abstract:
An image sensor has a supporting member for integrally supporting a reading system including illuminating means for illuminating an original document, a photoelectrically converting means and imaging means for imaging light reflected by the surface of the original document onto the photoelectrically converting means, and has a member disposed on the side surface of the supporting member. The image sensor has two or more substantially independent spaces formed in the supporting member. The illuminating means, the imaging means and the photoelectrically converting means are accommodated in one of the spaces.
Abstract:
An illumination device includes a light guide made of plastic, and a light source including a light emitting element whose dominant wavelength is a light emission wavelength in an infrared region, and identifies a banknote. White reference plates are provided at positions that are at opposite ends of a rod lens array and cover respective areas external to an image region across the banknote. A correction coefficient is acquired by calculation. The calculation is made by correcting an illuminance such that IR correction data is substantially identical to IR reference data preliminarily stored in a memory circuit in a signal processor on the basis of IR white reference data representing a white reference illuminance generated from light reflected from the white reference plates. The correction coefficient is used for correcting IR image data when the banknote is read.
Abstract:
The present invention discloses an image sensor, specifically a full spectrum recognition image sensor capable of reading and recognition image information for all of ultraviolet light, visible light and infrared light, which comprises a sensor substrate, photosensitive parts set on the sensor substrate and arranged in a straight line, a lens set on an upper portion of the sensor substrate, a light source set beside the lens, and a framework capable of accommodating said sensor substrate, said lens and said light source. A light-transmitting plate for carrying an original is set on an upper portion of the framework, the light source is a full spectrum light source capable of emitting light including ultraviolet light, visible light and infrared light, and the photosensitive parts on the sensor substrate consist of two parts, one part of which is a reflected light photosensitive part for receiving reflected light information generated by irradiating an original with the light source and another part of which is an exciting light photosensitive part for receiving exciting light information generated by irradiating an original with the light source. The image sensor of the present invention not only can recognize general color images, but also can recognize forgery-prevention images for various special purposes, and thus greatly improve the functions and the application field of the image sensor.
Abstract:
An image reading device includes: a first light source that irradiates light on a first side of an object; a memory that stores a plurality of parameters for controlling an intensity of the light emitting devices, each of the plurality of parameters corresponding to one of a plurality of groups; a controller that controls an intensity of the light emitting devices in response to one of the plurality of parameters stored in the memory; a first image reading unit that reads reflected light from the first side and generates monochrome image data on the basis of the read reflected light; and a second image reading unit that reads reflected light from the second side and generates monochrome image data on the basis of the read reflected light.
Abstract:
A first light source is adapted to illuminate a first object with first light. A first sensor includes a first light receiving element adapted to detect the first light by way of the first object. A second sensor includes a second light receiving element adapted to detect a second light which is externally inputted by way of a second object. A transparent member is disposed on at least one of a first optical path extending from the first object to the first sensor through a first lens and a second optical path extending from the second object to the second sensor through a second lens.
Abstract:
To make it possible to improve a printing speed. When printing a plurality of printing sheets 14, it is possible to decrease the time for generating correction data by using a pair of correction data values to print the printing sheets 14. Therefore, it is possible to decrease the time for printing each printing sheet 14 even compared to the case of a method for generating correction data for each printing sheet 14. As a result, even when the number of sheets to be printed is large, it is possible to improve a printing speed. Moreover, when meandering states of the printing sheet 14 are changed, it is possible to prevent disorder of a printed image due to meandering of the printing sheet 14 for a long time by newly generating correction data. Furthermore, by generating (updating) only a part of correction data when newly generating the correction data, it is possible to decrease the time for generating the correction data and improve a printing speed.
Abstract:
A lens unit (U15) includes a housing (45), an upper and a lower lens arrays (A1′, A2′), and a first and a second prisms (4A, 4B). Each of the lens arrays includes a plurality of lenses, a light-shielding member (4), and a plurality of positioning projections, all of which are integral with each other. Downwardly traveling light which enters the housing (45) through a first slit (45c) formed at an upper portion of the housing (45) is directed upward by the first prism (4A) to pass through the two lens arrays (A1′, A2′). The light is then directed downward by the second prism (4B) to exit the housing through a second slit (45d) formed at a lower portion of the housing (45).
Abstract:
A discharging and light emitting element included in a CIS unit includes a transparent electrode having an external electrode and a substrate having an internal electrode. A first lead is led out from the internal electrode and a second lead is led out from the external electrode, and first and second leads are led out from end portions of the substrate and the transparent electrode at the same side.
Abstract:
An image-reading device comprises a lens unit array comprising an array of distributed refractive index plastic cylindrical lens elements and plastic plates, adhering the distributed refractive index plastic cylindrical lens elements therebetween, and a plastic case containing and holding the lens unit array. The difference in the thermal expansion coefficients of the plates of the lens unit array and the plastic case is 5.0.times.10.sup.-5 cm/cm/.degree. C. or below, or more preferably, 3.0.times.10.sup.-5 cm/cm/.degree. C. or below. The plastic case is formed by connecting, in a longitudinal arrangement, a plurality of case segments formed by an injection molding.
Abstract translation:图像读取装置包括透镜单元阵列,该透镜单元阵列包括分布折射率的塑料柱面透镜元件和塑料板的阵列,将分布的折射率塑料柱面透镜元件粘附在其间,以及容纳和保持透镜单元阵列的塑料壳体。 透镜单元阵列和塑料壳体的板的热膨胀系数的差为5.0×10 -5 cm / cm /℃以下,更优选为3.0×10 -5 cm / cm /℃,或 下面。 塑料外壳是通过纵向配置连接多个通过注模成型形成的外壳段形成的。