Abstract:
A pulsed detonation gun comprises a small-diameter detonation tube, an igniter, and an outlet for discharging detonation products containing a coating material. A detonable or reactive mixture containing a coating precursor is formed in the detonation tube, and the detonable or reactive mixture is ignited to produce detonation or reaction products containing the coating precursor or a coating material formed in situ during a detonation process or a deflagration process. The coating material is discharged through the outlet and is contacted with the substrate to produce a coating. The device is particularly useful for coating the inside surfaces of small-diameter tubes and a variety of other difficult-to-reach substrate surfaces.
Abstract:
The present invention provides a method of coating a surface with a slip resistant coating. The method of the invention comprises either sequentially or simultaneously melting two different metal wires and directing droplets of the melted wires towards a surface to be coating. The resulting coating formed by this process tends to be rough and confers anti-slip properties to the surface. In one variation of the invention, the two different metal wires will be melted and atomized in a single spray gun. Alternatively, these wires may be melted in separate but adjacent spray guns. In either variation, the resulting metal sprays formed from the different wires will at least partially overlap.
Abstract:
The invention relates to an apparatus and a method for producing a sprayed layer on the surface of a substrate, wherein an admixture material which may have started to melt or is molten, is guided onto the surface of the substrate to be coated using a gas or gas mixture, as well as a relevant installation for producing the sprayed layer by means of a thermal spraying method, wherein the installation comprises means for supplying the admixture material or the gas or gas mixture. According to the invention, at least one feature of the thermal spraying process which influences the quality of the sprayed layer and which is responsible for the formation of the layer and its properties, is recorded, evaluated and assessed, checked, monitored and/or regulated. Both analogue and digital spectroscopic arrangements can be used as optical emission spectroscopic arrangements. The recording, evaluation and assessment, checking and/or monitoring using the optical emission spectroscopic arrangement can advantageously be used for online regulation and if necessary, also for optimising one or a plurality of parameters responsible for the formation of the layer and its properties.
Abstract:
Plasma spraying a substrate using particles having a ceramic coating on a combustible core, which may optionally be burned out before spraying, gives a potential for a thicker more conformable protective coat.
Abstract:
An environmentally resistant coating comprising silicon, titanium, chromium, and a balance of niobium and molybdenum for turbine components formed from molybdenum silicide-based composites. The turbine component may further include a thermal barrier coating disposed upon an outer surface of the environmentally resistant coating comprising zirconia, stabilized zirconia, zircon, mullite, and combinations thereof. The molybdenum silicide-based composite turbine component coated with the environmentally resistant coating and thermal barrier coating is resistant to oxidation at temperatures in the range from about 2000null F. to about 2600null F. and to pesting at temperatures in the range from about 1000null F. to about 1800null F.
Abstract:
A method for restoring thickness to load-bearing components of gas turbine engines, and for repairing a honeycomb structured gas turbine engine component. A surface of the component such as the backing surface of a honeycomb component after honeycomb removal is roughened and cleaned. A selected build-up material is deposited onto the substrate by high velocity oxy-fuel deposition or low pressure plasma spray. The component is heat treated to enhance the bond between the deposited material particles, and between the deposited material and the substrate by diffusion.
Abstract:
An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.
Abstract:
A target for use in sputtering may include a backing adapted to be operatively connected to a sputtering power source and an outer layer of a sputterable material carried by the backing The sputterable material comprises a mixture of zinc and a second metal having a melting point less than that of the zinc. The zinc and the second metal are present in the sputterable material in metallic form and are arranged as discrete volumes of the second metal in a matrix of zinc. This target may be manufactured by simultaneously plasma spraying zinc metal and the second metal onto a backing to create an outer layer of a sputterable material carried by the backing. The target may be used by placing the target and a substrate in a sputtering chamber and applying power to the target while maintaining in the sputtering chamber a reactive atmosphere comprising oxygen, thereby depositing on a surface of the substrate a film comprising oxides of zinc and the second metal.
Abstract:
A protective masking device adapted to rest on the upper surface of an engine block having cylinder bores during a thermal coating operation of the cylinder bores comprises a protective masking member having an essentially hollow cylindrical shape with an inner diameter selected in relation to the diameter of the cylinder bore to be thermally coated. The protective masking device comprises either an essentially tube shaped outer sleeve member and an insert member inserted into the outer sleeve member, or it is designed such that at least a portion of a layer or of several layers of coating material applied to the inner side of the masking device during the coating operation of the related cylinder bore is mechanically removable. Using the proposed masking device, the coating operation can be started outside the cylinder bore, without the danger that portion of the engine block or the environment is contaminated by coating particles.
Abstract:
The present invention provides a refractory and heat insulating material excellent in heat resistance, slag resistance, molten steel resistance, wear resistance, and mechanical impact resistance, and relates to a highly durable heat insulating material characterized by having a thermally sprayed film of refractory ceramic on a surface of a formed body of an inorganic refractory fiber which surface is covered with a cloth material or was covered with the cloth material until it burned out by flame fusion coating of refractory ceramic powder material during the fabricating process of the heat insulating material, with an application film of a surface hardening material acting as an intermediary layer between the thermally sprayed film and the fiber body.