Abstract:
A retractable support for a screen, and interior layout assembly for an aircraft cabin comprising such a support are provided. The retractable support for a screen includes a housing for receiving the screen in a retracted position, and an arm movably mounted relatively to the housing between a retracted position inside the housing and a deployed position outside the housing. The arm includes first and second rigid segments jointed with each other so that the second segment pivots relatively to the first segment around a first pivot axis between a compact configuration, in which the second segment is fitted into a recess of the first segment, and an extended configuration, in which the second segment extends out of said recess.
Abstract:
A method for detecting a failure of at least one sensor onboard an aircraft implementing wind detection is provided. The method includes measuring an airspeed of the aircraft; measuring a geographical speed of the aircraft; determining an instantaneous wind vector, based on the measured airspeed and geographical speed; establishing an instantaneous wind variation vector, based on the determined instantaneous wind vector; projecting the instantaneous wind variation vector on the direction of the vector of an air or geographical speed of the aircraft; and determining the presence of a failure based on the obtained projection.
Abstract:
A piloting assistance system for an aircraft during manual piloting is provided. The piloting assistance system includes a monitoring module, configured to compare an acceleration of the aircraft to an authorized acceleration that depends on a speed of the aircraft, an acceleration control module, able to be switched between an activated state and a deactivated state, and configured so as, in the activated state, excluding the deactivated state, to generate a control signal of at least one control device of the acceleration of the aircraft to push the acceleration of the aircraft toward the authorized acceleration range, in order to keep or push the speed of the aircraft in a predefined usage speed range, the monitoring module being configured to activate the acceleration control module when the acceleration of the aircraft is not comprised in the authorized acceleration range.
Abstract:
A protective method is provided against torque peaks between a motor adapted for setting a shaft of the motor into rotation and an electric source adapted for electrically powering an electric assembly and including a fixed section and a rotating adapted for rotating with the shaft. The method includes a step for controlling the operation of the electric source forcing the rotary movement of the rotating section with the shaft to observe an instruction relating to the torque of the rotating section applied to the shaft of the motor, the instruction being adapted depending on at least one element characterizing a current operating state of the motor.
Abstract:
A method for exchanging data between a storage system on the ground-based and an onboard storage system of an aircraft is provided. The method includes a first step for synchronization of a set of data contained in the ground-based storage system with a corresponding set of data of a storage memory of a data exchange device, through a communications network, a step for coupling the data exchange device to a local internal network of the aircraft connected to the storage system, and then a second step for synchronization of the set of data of the storage memory with a corresponding set of data of the onboard storage system, through the local internal network.
Abstract:
An interior layout assembly of an aircraft cabin, and related method are provided. The assembly includes a table, a console defining a receiving housing and a cover mounted on the console. The cover in the closed configuration and the console define a passage slot between them. The assembly also includes a flap closing off the passage slot, movable by the table from an active configuration closing the passage slot to a retracted configuration freeing the passage slot during the passage of the table from its retracted position to the deployed position.
Abstract:
A supporting device for an interior layout assembly of an aircraft cabin, a related assembly and method are provided. The device includes a stationary frame; a table that can be deployed relative to the frame between a retracted position and a horizontal deployed position; a mechanism for guiding the movement of the table relative to the frame between the retracted position and the deployed horizontal position. The guide mechanism defines at least one bearing point for the table during its passage from the retracted position to the deployed horizontal position, the bearing point having a globally invariable position relative to the frame, the table being configured to pivot on the bearing point while moving laterally away relative to the bearing point, by sliding on the bearing point, to the deployed position.
Abstract:
A drain mast or discharging fluids from an aircraft and associated method are provided. This drain mast includes a fairing including a base including an upstream section intended to be attached on an outer surface of the aircraft and a downstream section. The drain mast also includes a discharge nozzle including a discharge end opening onto the outside of the fairing, the discharge nozzle protruding from the downstream section in a first direction with respect to the base, the base and the discharge nozzle defining a tubular through-cavity, extending from the upstream section as far as the discharge end. The fairing also includes a profiled section for guiding air, protruding from the downstream section, in a direction opposite to the first direction, and configured for orienting an incident mass of air on the profiled section towards the discharge end.
Abstract:
A method for detecting a failure of at least one sensor onboard an aircraft implementing wind detection is provided. The method includes measuring an airspeed of the aircraft; measuring a geographical speed of the aircraft; determining an instantaneous wind vector, based on the measured airspeed and geographical speed; establishing an instantaneous wind variation vector, based on the determined instantaneous wind vector; projecting the instantaneous wind variation vector on the direction of the vector of an air or geographical speed of the aircraft; and determining the presence of a failure based on the obtained projection.
Abstract:
A method for detecting a failure of at least one sensor onboard an aircraft implementing a baro-inertial loop is provided. The method includes implementing a baro-inertial loop including obtaining a computed vertical speed, then a short-term baro-inertial altitude, based on a double integration of the measured vertical acceleration; and developing at least one intermediate loop parameter based on a deviation between the short-term baro-inertial altitude and the pressure altitude. The method also includes observing at least one failure detection parameter obtained from one of the intermediate parameters of the baro-inertial loop; and determining the presence of a failure on one of the sensors of the aircraft based on the value of the observed failure detection parameter.