Abstract:
A locking assembly may be to locate a display member of a computing device relative to a base member of the computing device. A spring may be to attach to the display member. A first magnetic member may be in contact with to the spring. A wheel may be to attach to the display member to roll on the base member. A lock may be to engage the spring to lock the wheel when the first magnetic member is in proximity to a second magnetic member of the base member such that a magnetic force is exerted therebetween.
Abstract:
A printing system including a print engine, a drying module, and a heating module. The print engine applies printing fluid on media. The drying module dries the printing fluid and provides dried printing fluid. The heating module applies thermal energy to the dried printing fluid and transitions the dried printing fluid to a cured printing fluid that has improved durability versus the dried printing fluid.
Abstract:
In an embodiment, a fluid flow structure includes a micro device embedded in a molding. A fluid feed hole is formed through the micro device, and a saw defined fluid channel is cut through the molding to fluidically couple the fluid feed hole with the channel.
Abstract:
Examples disclosed herein relate to determining a segmentation boundary based on images representing an object. Examples include an IR image based on IR light reflected by an object disposed between an IR camera and an IR-absorbing surface, a color image representing the object disposed between the color camera and the IR-absorbing surface, and determining a segmentation boundary for the object.
Abstract:
An ink composition includes colorant, hydroxylated and non-hydroxylated co-solvents, and water. A weight percent ratio of hydroxylated to non-hydroxylated co-solvents ranges from 46:54 to about 62:38. The composition also includes an acid and a polyurethane copolymer binder. The acid is selected from the group consisting of oleic acid, linoleic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, and combinations thereof. The binder is formed from the polymerization of a diisocyanate and at least three diols including a first diol containing a hydrophilic stabilizing group, and a second diol having less than 8 atoms in a backbone chain between two hydroxyl groups. A mole percentage of the second diol is at least 30% of a total mole percentage of diol monomers in the binder. An acid number of the binder ranges from 50 to 75. The composition also includes lithium present in an amount ranging from about 50 to about 400 ppm.
Abstract:
A printable recording media including a composite base substrate that contains, at least, two constituent material layers that are laminated together with a flame resistant adhesion layer containing an adhesive compound and up to 50% of a flame retardant agent by total weight of the flame resistant adhesion layer, wherein, at least, one of the constituent material layer is a fiber layer; and an image receiving layer that is coated on one side of the composite supporting substrate. Also disclosed are the method for making such printable recording media and the method for producing printed images on such printable recording media.
Abstract:
A printable medium with a supporting base substrate that has, on its image side, a substrate sizing layer and an image receiving layer, and having, on its back-side a fabric backing and barrel layer with flame retardancy. Also disclosed are the method for making such printable medium and the method for producing printed images.
Abstract:
An apparatus and method support a plurality of print head dies (24, 324, 524) on a print bar (22, 322, 522). The plurality of print head dies (24, 324, 524) comprise a print head die (24, 324, 524) having a circuit (26, 526) forming a series (28, 328) of information bits (30), wherein bit locations in the series (28, 328) are mapped to information type definitions based on a location of the print head die (24, 324, 524) on the print bar (22, 322, 522) relative to other print head dies (24, 324, 524) on the print bar (22, 322, 522).
Abstract:
Provided is a method of auto-scaling. A state change event notification related to a computing resource associated with a computer application is received. Immediate parent configuration items (CIs) associated with the computer application in a configuration management database (CMDB are identified. Status of the immediate parent configuration items (CIs) associated with the computer application is determined. Auto-scaling is performed if the status of the immediate parent configuration items (CIs) associated with the computer application is normal.
Abstract:
In one example in accordance with the present disclosure, a method conducted by a projective computing system is provided. The method includes displaying a first interface on a vertical display, projecting a second interface on a horizontal touch sensitive mat, receiving a touch input modification request, and changing the touch input association from the horizontal touch sensitive mat to the vertical display such that a touch input on the horizontal touch sensitive mat controls the first interface displayed on the vertical display.