Abstract:
A method and apparatus for executing attachment procedures in a long term evolution (LTE) system to accommodate a single tunnel approach. Third Generation Partnership Program (3GPP) packet data protocol (PDP) context activation procedures are used for the allocation of an Internet protocol (IP) address and the establishment of tunneling between an evolved Node-B (eNodeB) and an anchor node, while allowing multiple radio access bearers (RABs) to be mapped to one PDP context for different quality of service (QoS) requirements. Thus, one PDP context is sufficient for a wireless transmit/receive unit (WTRU) within a single packet data network (PDN). Multiple PDP contexts can be established for special requirements, (e.g., bundled services), or when the WTRU connects to multiple PDNs.
Abstract:
In a wireless communication system comprising at least one evolved Node-B (eNB) and a plurality of wireless transmit/receive units (WTRUs), a non-contention based (NCB) channel is established, maintained, and utilized. The NCB channel is allocated for use by one or more WTRUs in the system for utilization in a variety of functions, and the allocation is communicated to the WTRUs. The wireless communication system analyzes the allocation of the NCB channel as required, and the NCB channel is reallocated as required.
Abstract:
A method and apparatus enhance the selection of transport block set size (TBSS), number of spreading codes, and modulation type, referred to collectively as transport format resource combination (TFRC), in a medium access control (MAC) layer for transmission of data in a code division multiple access (CDMA) wireless communication system, preferably a Universal Mobile Telecommunications Systems (UMTS) high speed downlink packet access (HSDPA) communication system. The maximum number of spreading codes available for transmission and the set of possible TFRCs are preferably determined based on a channel characteristics provided in part by a channel quality indicator (CQI). For each TBSS value in the set of possible TFRCs, a TFRC is selected with the largest number of spreading codes within the maximum number of spreading codes for which the corresponding coding rate is preferably at least 1/3. The corresponding code rate for each selected TFRCs is compared to a threshold to select a corresponding type of modulation. One of the selected TFRCs is selected to be provided to the PHY layer that best matches the CQI and preferably has a maximum TBSS.
Abstract:
A wireless communication method and apparatus for detecting and decoding enhaiced dedicated channel (E-DCH) hybrid automatic repeat request (H-ARQ) indicator channel (E-HICH) transmissions are disclosed. A wireless transmit/receive unit (WTRU) receives E-HICH transmissions (202) and detects an H-ARQ indicator transmitted via the E-HICH by performing a binary hypothesis test (204). The WTRU then generates an acknowledgement (ACK) message or a non acknowledgement (NACK) message based on the detected H-ARQ indicator (206). A reliability test may be further performed to improve performance, whereby the binary hypothesis test may be performed only if the reliability test is passed.
Abstract:
A method and apparatus for performing a power efficient cell search in a multi-cell wireless communication system are disclosed. A wireless transmit/receive unit (WTRU) having a memory that stores a cell identification list of prioritized previously top-ranked cell identities (IDs) is used to perform the cell search. A primary synchronization code (PSC) correlation peak location on a received signal is selected. A common pilot channel (CPICH) correlation value is determined by non-coherent integration of a local signal created based on a first cell ID on the cell identification list to the received signal. If the CPICH correlation value is greater than a noise threshold, thus indicating that the first cell ID is a newly found cell ID, or if a last cell ID in the cell identification list is reached, an additional determination is made as to whether there is more than one cell ID on the list having the same timing.
Abstract:
A method and apparatus for mapping an uplink control channel to a physical channel in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. A wireless transmit/receive unit (WTRU) generates control bits to be carried by a control channel. The WTRU maps the control channel to a plurality of subcarriers among subcarriers in a resource block assigned to the WTRU and to at least one long block (LB) in a sub-frame. The control channel includes a data-non-associated control channel and/or a data-associated control channel. The subcarriers mapped to the data-non-associated control channel may be distributed over all, or a fraction of, at least one resource block. The data-non-associated control channel may be mapped to the subcarriers with one or more subcarriers as a basic unit. The mapped subcarriers may be consecutive in frequency domain. The control bits may be multiplexed with data bits within the LB.
Abstract:
In an orthogonal frequency division multiplexing (OFDM) system, a frequency domain channel estimate for non-nullified subcarriers is converted to a time domain channel estimate. The number of taps L of a channel model is determined based on the time domain channel estimate. An improved time domain channel estimate is obtained by computing L tap coefficients of the channel model from the frequency domain channel estimate. An improved frequency domain channel estimate is obtained by performing a Fourier transform on the improved time domain channel estimate. Alternatively, a time domain truncation method may be performed selectively only if the signal-to-noise ratio (SNR) is below a threshold. Alternatively, a frequency domain channel estimate for pilot subcarriers are converted to a time domain channel estimate and an improved frequency domain channel estimate is obtained based on the number of pilot subcarriers and a delay spread.
Abstract:
A wireless communication system and method of implementing an evolved system attachment procedure are disclosed. The system includes a first core network and a second core network which is evolved from the first core network. A wireless transmit/receive unit (WTRU) sends an attach request message to the second core network. The second core network activates a packet data protocol (PDP) context and sends an attach accept message to the WTRU. The attach accept message includes information regarding the PDP context. The second core network constructs a session and mobility management (SMM) context for session management (SM) and mobility management (MM) for the WTRU.
Abstract:
Several methods are provided for communicating emergency call capability information between a station and an access point (AP) in a wireless local area network. The methods include advertising by the AP of its emergency call capabilities and announcing by the station of its emergency call capabilities. The AP can advertise its emergency call capabilities in a beacon frame, a probe response frame, a reassociation response frame, or a reauthentication response frame. The station can announce its emergency call capabilities in an association request frame, a reassociation request frame, an authentication request frame, or a reauthentication request frame.
Abstract:
A method and system for autonomous channel coordination for a wireless distribution system (WDS) are disclosed. A wireless communication system includes a plurality of access points (APs) and the APs communicate each other via a WDS. A coordinated channel group (CCG) of a plurality of member APs is established. The member APs of the CCG camp on a WDS channel used for the WDS among the member APs of the CCG. One AP among the member APs of the CCG is designated as a master AP. The master AP coordinates with other member APs of the CCG for selecting and configuring the WDS channel for the CCG and addition and deletion of member APs. By allowing APs to define a CCG, changes of the WDS channel are performed autonomously while maintaining connectivity.