Abstract:
PURPOSE: To obtain a high drape in a wound/burn treatment supply, by forming a crosslink gel of a pressure-sensitive adhesive from a solution or dispersion of a water-soluble synthetic polymer dissolved or dispersed in water or a plasticizer. CONSTITUTION: A return padding 10 for electrosurgery is composed of an electroconductive member 12 and an electroconductive, water-insoluble, hydrophilic and elastic pressure-sensitive adhesive 14. The padding 10 is prepared by coating a foam layer 22 with an adhesive layer 26, laminating a nonwoven fabric layer 24, placing the electroconductive member 12, coating a no- crosslinked proper synthetic polymer dissolved or dispersed in a proper plasticizer on the nonwoven fabric layer 24 and the the electroconductive member 12, crosslinking by ionic irradiation, then placing a release liner 28. Thus, a product with higher drape ability than skin can be obtained, which allows passage of oxygen, moisture, drugs and salts soluble to the adhesive, and functions as a barrier for bacteria.
Abstract:
A transformer coupled power transmitting and isolated switching circuit is disclosed for use in an electrosurgical apparatus to transmit power from a power generator to a utilization instrument for enabling electrosurgery and to transmit mode information from the utilization instrument to the power generator for enabling control of the operational mode of the generator. The electrosurgical power generator is coupled to the utilization instrument through an isolating transformer. The isolating transformer is loaded in a preselected manner under the control of a logic circuit with the load on the isolating transformer then being sensed and the sensed loading information utilized to control the mode of operation of the power generator to assure that power generator operates in the desired mode for the electrosurgery function then required.
Abstract:
An electrical switching device is disclosed herein and comprises the major components suitable for use as a compact, easily installed switching device and also in an electro-surgical tool which, through the operation of the switching device, is readily adaptable for different intended uses and highly reliable. In one embodiment, the switching device includes a tubular housing having an intermediate longitudinally extending slot formed in its wall and a pair of longitudinally extending diametrically opposed recesses formed on its inner surface. A rectangularly shaped printed circuit board is mounted within the diametrically opposed recesses and includes at least three spaced apart electrical contacts which are positioned so as to be accessable through the slot formed in the housing. An integrally formed, elongated spring contact member is disposed in electrical conducting engagement with the center one of these electrical contacts and includes opposing energy absorbing coils, each of which is adapted to engage reliably a corresponding one of the otherwise free contacts. In this regard, in order to increase further the reliability of the engagement of the contacts, means are provided for securing the printed circuit board against inadvertent longitudinal movement within the housing. An arcuately shaped insert is mounted within the aforedescribed slot and engages portions of the lower surface of the circuit board for further securing said insert in place. In addition, the arcuately shaped insert includes a longitudinally extending slot adapted to receive therein a portion of a longitudinally extending rocker type switch actuator for pivotal movement about an axis generally normal to the axis of alignment of the electrical contacts. The free ends of the aforedescribed spring contact member are positioned within recess guides formed in the actuator and move into engagement with their corresponding contacts in response to selective pivotal movement.
Abstract:
A safety circuit suitable for use in electrosurgery apparatus to prevent electrical burns is described herein. A current sensing transformer having a pair of primary windings and a single secondary or sense winding is provided. The primary windings are connected so as to compare the input current applied to an active electrode with the output current from an indifferent plate. When the comparison is unequal, the sense winding generates an error signal that warns the operator of the electrosurgery apparatus of a possible electrical burn situation. Alternatively, the primary windings are connected so as to sense the equality of output currents from two indifferent plates. Lack of equality causes an error signal to be generated to warn the operator.
Abstract:
A bipolar electro-surgical instrument for vessel sealing comprises first, and second members (13, 14) connected by a pivot (15). A pair of jaws (19, 20) have opposable seal surfaces that are designed to grasp vascular tissue, and conduct bipolar electro-surgical current therethrough. Electrodes (11, 12) on the jaws, including the seal surfaces (25) are removable, and disposable. The jaws of the instrument have mechanical interfaces (22, 23) designed to accept replacement electrodes. The instrument further comprises interlocking ratchets (29, 30) designed to hold a constant closure forces between the seal surfaces. Wires (26, 27) extend from the electrodes along one of the members, and are connectible to an electro-surgical generator.
Abstract:
A power control apparatus for an electrosurgical generator (10) is used for controlling output power from the generator (10) to the tissue or bodily fluids of a patient (11). The control apparatus rapidly determines the range of impedance of the load on the electrosurgical generator (10) and adjusts the output power accordingly. Output current and output voltage from the electrosurgical generator (10) are monitored and sent to a microprocessor (18). The microprocessor (18) runs an algorithm that rapidly determines the impedance range of the load on the generator (10). The algorithm uses computational techniques, such as comparisons and bit shifting, that avoid long division and other time-consuming operations. The microprocessor (18) can then adjust a high voltage power supply (15) that effects the radio frequency amplifier stage. A method for controlling the power of the electrosurgical generator (10), including steps in the algorithm, is also disclosed.
Abstract:
A partially coated electrosurgical electrode has a portion of a medical grade metallic material as a substrate for energy application. Conductive sites of metallic material or alloys thereof pass energy through peaks that define valleys nearby. A partial coating in the valleys has a low surface free energy. A treated surface across the peaks and generally over the filled valleys is relatively smooth for non stick characteristics during application of electrosurgery to tissue and bodily fluids. Openings in the treated surface through the partial coating are at the peaks of conductive sites to expose the metallic material or alloys thereof. The partial coating is a fluorinated polymer. The treated surface is a relatively even level that is not flat. The metallic material substrate is an alloy of stainless steel or nickel chrome. A mechanically deformed surface finish, plasma or vapor deposition on the substrate forms the conductive sites. A method of manufacturing the electrode has steps including preparing the metallic conductor, making it with the conductive material having peaks above the valleys as conductive sites, applying the partial coating to it and treating the surface across the peaks and generally over the filled valleys of the partially coated electrically conductive electrode. Locating the openings among the valleys is a step. Treating may be mass finishing, such as vibratory or tumbling the partially coated electrodes with or without abrasive material media or polishing, buffing, surface grinding, abrasive belt grinding or sanding with abrasive material. Making the peaks and valleys can be by stamping, coining, burnishing, embossing, threading, tumbling, vibrating, shot peening, wire brushing, grit blasting, thermal spraying, with powder, with wire supplied to melt and be distributed, or with high velocity oxygen fuel and a nickel, cobalt alloy, stainless steel or a nickel chrome alloy. A manufacturing method for the electrode has coating a strip of metal with the low surface energy polymer and forming it in a stamping operation with a raw metal edge.