Abstract:
A power control apparatus for an electrosurgical generator (10) is used for controlling output power from the generator (10) to the tissue or bodily fluids of a patient (11). The control apparatus rapidly determines the range of impedance of the load on the electrosurgical generator (10) and adjusts the output power accordingly. Output current and output voltage from the electrosurgical generator (10) are monitored and sent to a microprocessor (18). The microprocessor (18) runs an algorithm that rapidly determines the impedance range of the load on the generator (10). The algorithm uses computational techniques, such as comparisons and bit shifting, that avoid long division and other time-consuming operations. The microprocessor (18) can then adjust a high voltage power supply (15) that effects the radio frequency amplifier stage. A method for controlling the power of the electrosurgical generator (10), including steps in the algorithm, is also disclosed.
Abstract:
A power control system for an electrosurgical generator (11) will control the output power to desired levels. The power control system uses a simple closed-loop control algorithm. Sensors in the electrosurgical generator (11) will monitor changes in output current and output voltage. There may also be sensors to monitor changes in the temperature of the electrosurgical tool, mechanical strain in the electrosurgical tool, or phase shift between output voltage and output current. A microprocessor (19) in the electrosurgical generator (11) is connected to the sensors and repetitively compares the sensed values against their respective threshold values. The threshold values are computed by the microprocessor (19) based on the desired output power, or other desired tissue effects. The microprocessor (19) also has an output to control an adjustable high voltage power supply (15) in the electrosurgical generator (11). The microprocessor (19) will adjust the high voltage power supply (15) to maintain all sensed values below their respective threshold values. The threshold values are computed by the microprocessor (19) based on the desired output power, or other desired tissue effects. The threshold values may also be computed as a function of the impedance of the output load on the electrosurgical generator (11).
Abstract:
An apparatus (10) and method to find leakage due to tissue load or transients at the start or end of electrosurgery. Active and return electrodes (11 and 16) between a patient and an ESU (13) pass RF energy sensed by inductive transformers (17 and 19). A circuit finds leakage at more than two thousand times per second; that frequency depends on the phase shift (23) between voltage and current. Software and feedback (26) manage RMS voltage to reduce the peak voltage of the output wave or increase the crest factor by pulse width modulation of the RF drive. Phase shift (23) changes of the active and return current signals (18 and 20) and peak voltage and current are found. The phase angle theta is compared to a threshold and if greater than the frequency at which the differences (22) between the active and return current signals (18 and 20) are examined is increased. The differences (22) between the active and return current signals (18 and 20) are examined and if greater than a maximum for leakage while the mode selected is in coagulation then the pulse width of the RF drive is reduced to hold voltage wave-form peaks at a predetermined value while the RMS voltage is reduced to lower the leakage to a maximum or the frequency at which the leakage current is calculated is held to a maximum level until the phase angle theta is smaller than the threshold. If the difference (22) is greater than a maximum for leakage while the mode is cut or bipolar then the Vrms is reduced to a maximum level or the level remains high until the phase angle theta is smaller than a threshold. The crest factor is increased by reducing the duty cycle or the pulse width of the output wave shape.
Abstract:
A circuit, for monitoring and controlling parameters of an electrosurgical unit (10), ESU, relative to load and the RF energy, has a load responsive output sensing circuit (11) that measures the ESU load. A signal modifier (12) attached to the sensing circuit (11) enhances the signals measured and transmits them to a buffer (13). An analog to digital converter (18), A/D, digitizes the signals and samples wave pulse train at about eight million samples per second. A data memory (21) stores the digitized signals. An RF drive clock (27) connects to the ESU output; a sample clock (19) uses phase shifting to interrogate the input signals to a processor (20), DSP, at a greater sampling rate of frequency than without. The DSP receives the stored signals from the data memory (21) and processes them while monitoring and calculating ESU parameters measured, i.e. voltage, current, power, load impedance, leakage current, peak to peak voltage, peak to peak current, spectral content and/or crest factor of the RF wave pulse train energy to use as controlling feedback to either a high voltage power supply in the ESU, regulating the RF drive pulses or both. A method monitors and controls the ESU relative to load and has the steps of collecting parameters with the ESU output sensing circuit (11) responsive to loads; enhancing signals with the signal modifier (12); transmitting signals to the buffer (13); converting signals with the A/D converter (18); storing signals in the data memory (21); receiving signals in the DSP, and processing, monitoring and controlling signals by repeatedly measuring ESU output parameters.
Abstract:
A power control apparatus for an electrosurgical generator (10) is used for controlling output power from the generator (10) to the tissue or bodily fluids of a patient (11). The control apparatus rapidly determines the range of impedance of the load on the electrosurgical generator (10) and adjusts the output power accordingly. Output current and output voltage from the electrosurgical generator (10) are monitored and sent to a microprocessor (18). The microprocessor (18) runs an algorithm that rapidly determines the impedance range of the load on the generator (10). The algorithm uses computational techniques, such as comparisons and bit shifting, that avoid long division and other time-consuming operations. The microprocessor (18) can then adjust a high voltage power supply (15) that effects the radio frequency amplifier stage. A method for controlling the power of the electrosurgical generator (10), including steps in the algorithm, is also disclosed.
Abstract:
An apparatus (10) and method to find leakage due to tissue load or transients at the start or end of electrosurgery. Active and return electrodes (11 and 16) between a patient and an ESU (13) pass RF energy sensed by inductive transformers (17 and 19). A circuit finds leakage at more than two thousand times per second; that frequency depends on the phase shift (23) between voltage and current. Software and feedback (26) manage RMS voltage to reduce the peak voltage of the output wave or increase the crest factor by pulse width modulation of the RF drive. Phase shift (23) changes of the active and return current signals (18 and 20) and peak voltage and current are found. The phase angle υ is compared to a threshold and if greater than the frequency at which the differences (22) between the active and return current signals (18 and 20) are examined is increased. The differences (22) between the active and return current signals (18 and 20) are examined and if greater than a maximum for leakage while the mode selected is in coagulation then the pulse width of the RF drive is reduced to hold voltage wave-form peaks at a predetermined value while the RMS voltage is reduced to lower the leakage to a maximum or the frequency at which the leakage current is calculated is held to a maximum level until the phase angle υ is smaller than the threshold. If the difference (22) is greater than a maximum for leakage while the mode is cut or bipolar then the Vrms is reduced to a maximum level or the level remains high until the phase angle υ is smaller than a threshold. The crest factor is increased by reducing the duty cycle or the pulse width of the output wave shape.
Abstract:
An apparatus (10) and method to find leakage due to tissue load or transients at the start or end of electrosurgery. Active and return electrodes (11 and 16) between a patient and an ESU (13) pass RF energy sensed by inductive transformers (17 and 19). A circuit finds leakage at more than two thousand times per second; that frequency depends on the phase shift (23) between voltage and current. Software and feedback (26) manage RMS voltage to reduce the peak voltage of the output wave or increase the crest factor by pulse width modulation of the RF drive. Phase shift (23) changes of the active and return current signals (18 and 20) and peak voltage and current are found. The phase angle υ is compared to a threshold and if greater than the frequency at which the differences (22) between the active and return current signals (18 and 20) are examined is increased. The differences (22) between the active and return current signals (18 and 20) are examined and if greater than a maximum for leakage while the mode selected is in coagulation then the pulse width of the RF drive is reduced to hold voltage wave-form peaks at a predetermined value while the RMS voltage is reduced to lower the leakage to a maximum or the frequency at which the leakage current is calculated is held to a maximum level until the phase angle υ is smaller than the threshold. If the difference (22) is greater than a maximum for leakage while the mode is cut or bipolar then the Vrms is reduced to a maximum level or the level remains high until the phase angle υ is smaller than a threshold. The crest factor is increased by reducing the duty cycle or the pulse width of the output wave shape.
Abstract:
A circuit, for monitoring and controlling parameters of an electrosurgical unit (10), ESU, relative to load and the RF energy, has a load responsive output sensing circuit (11) that measures the ESU load. A signal modifier (12) attached to the sensing circuit (11) enhances the signals measured and transmits them to a buffer (13). An analog to digital converter (18), A/D, digitizes the signals and samples wave pulse train at about eight million samples per second. A data memory (21) stores the digitized signals. An RF drive clock (27) connects to the ESU output; a sample clock (19) uses phase shifting to interrogate the input signals to a processor (20), DSP, at a greater sampling rate of frequency than without. The DSP receives the stored signals from the data memory (21) and processes them while monitoring and calculating ESU parameters measured, i.e. voltage, current, power, load impedance, leakage current, peak to peak voltage, peak to peak current, spectral content and/or crest factor of the RF wave pulse train energy to use as controlling feedback to either a high voltage power supply in the ESU, regulating the RF drive pulses or both. A method monitors and controls the ESU relative to load and has the steps of collecting parameters with the ESU output sensing circuit (11) responsive to loads; enhancing signals with the signal modifier (12); transmitting signals to the buffer (13); converting signals with the A/D converter (18); storing signals in the data memory (21); receiving signals in the DSP, and processing, monitoring and controlling signals by repeatedly measuring ESU output parameters.