Abstract:
PURPOSE: A method for fabricating nanofiber of cellulose acetate and montmorillonite is provided to obtain nanofiber with improved structural, thermal, and mechanical characteristics. CONSTITUTION: A method for fabricating nanofiber comprises: a step of preparing a mixture solution of cellulose acetate solution and montmorillonite; and a step of electrospinning the mixture solution. The method further comprises a step of stirring the mixture solution before electrospinning.
Abstract:
A magnetism inhalation valve of uniflow meso-scale microengine and functioning method for the same is provided to improve heating efficiency and endurance and simplify the whole configuration. A magnetism inhalation valve of uniflow meso-scale microengine comprises a cylinder block head(10), a cylinder head(20) layered on one side of the cylinder block head; and a cylinder sleeve(50) directing a piston(40) to move left and right. The fuel and the air carried from the fuel tank are mixed. The air-fuel mixture enters into the cylinder block head. The cylinder head ignites air-fuel mixture using a heater coil(21).
Abstract:
A successive preparation method of carbon nanotube and a device for the preparation are provided to mass-produce carbon nanotube of uniform size under quantative control, to control the shape of the carbon nanotube easily, and to reduce manufacturing cost by employing ultrasonic oscillation gasification for pulverizing metal catalyst liquid mixture comprising metal catalyst particle and liquid carbon source. A device for successive preparation of carbon nanotube has: a raw material supply device part(1); a gasifying device part(2); a transportation gas supply device part(3); a reaction device part(4); a successive collector part(7); and a vacuum device part(6) which has a sample bottle(78) connected to the successive collector part and a vacuum pump(61) for removal of inner pressure of the reaction device and remained oxygen. The raw material supply device part(1) has a syringe pump(11) for quantative supply of the metal catalyst liquid mixture(12). The drops of the supplied mixture from the syringe pump fall down onto an ultrasonic oscillation plate(21) concurrently with being pulverized to very small particle. The ultrasonic oscillation plate is controlled by separate an ultrasonic oscillation controller(22) that controls the operation time of on/off timer depending on the supplied amount in the supply device. The pulverized precursor is transported to the reaction device part of a high temperature of 600 to 900deg.C by means of a transportation gas(31) which is supplied from the outside. The transportation gas is controlled by a flux controller(32), mixed homogeneously in a mixer(33), and transported to the gasifying device part. The reaction device part has a perpendicular tube(44), a heater(42) surrounding the tube, and a reactor temperature controller(43) for the heater. The reaction device part is equipped with: the successive collector part(7) for successive collecting of the remained particles in the reaction device part and of carbon nanotube which is mainly produced in gas state; and vacuum device part which is combined with the successive collector in order to remove inner pressure of the reaction device and remained oxygen, in perpendicular direction. The successive collector has a screw(75) inside, and the screw is driven by a motor(76) of which velocity depends on the amount of the produced carbon nanotube by means of a motor control device(77). The produced carbon nanotube from the screw is collected in the sample bottle. A preparation method of carbon nanotube comprises steps of: supplying a metal catalyst liquid mixture comprising liquid carbon source and metal catalyst particles after completing the device for successive preparation of carbon nanotube which employs ultrasonic oscillation of automatic control for operation time and operation degree; producing precursor of uniform nano-size having metal catalyst particles, carbon and hydrogen by gasifying for pulverization of the metal catalyst liquid mixture in the ultrasonic oscillation system for automatic control of the operation time and operation degree; and transporting the pulverized nano-size precursor by transportation gas, separating the precursor into carbon, hydrogen and metal catalyst particles, respectively by thermal decomposition, absorbing only the separated carbon particles on the metal catalyst particles, and forming the shape and structure of carbon nanotube by diffusion, and the obtained highly pure carbon nanotube is collected successively in a perpendicular state for successive preparation.
Abstract:
A module type hydrogen reformer is provided to maximize thermal efficiency of the system by direct use of heat generated by catalytic combustion or by supplying heat in a short distance within the reformer and to minimize the size of the hydrogen reformer at the same heat rate. A hydrogen reformer extracting hydrogen gas includes an exothermic device(1) for supplying a mixture of air and fuel for exothermic reaction of catalyst, an endothermic device(3) for supplying a gas mixture for endothermic reaction of catalyst to reform hydrogen, and a device(2) for generating both exothermic reaction as a secondary reaction and endothermic reaction as a primary reaction of hydrogen reforming by utilizing gas mixtures supplied from both the exothermic and endothermic devices.
Abstract:
본 발명은 폐열을 이용한 에너지 절약형 에나멜 코팅 동선용 어닐링 오븐에 관한것으로, 그 목적은 동선의 열처리에 소요되는 운전비용의 절감과 과소둔을 예방하기 위한 새로운 어닐링 오븐 구조를 제공하는데 있다. 본 발명의 구성은 에나멜 코팅 공정에서 사용되는 동선을 열처리하는 어닐링 오븐에 있어서, 어닐링 오븐(1)의 외부를 이루는 어닐링오븐 외관(11)과; 이 어닐링오븐 외관(11) 내부 길이방향으로 장치되는 어닐링오븐 내관(12)과; 상기 어닐링오븐 내관(12)의 내부에서 설치되어 유입되어 배출되는 동선(7)을 어닐링하는 동선이송가이드관(13)과; 어닐링오븐의 내부 온도를 조절하기 위해 설치되는 전기히터(2)와; 폐열을 다시 어닐링 오븐에 재순환시키는 폐가스유입부(3) 및 폐가스배기부(4)와; 열팽창에 대한 완충 작용을 수행하기 위해 어닐링오븐의 중앙부에 장착된 익스펜션 조인트(5)와; 동선의 산화를 방지하기 위해 동선의 이동방향과 역방향으로 수증기를 유입시키는 수증기발생장치(6)와; 동선이송가이드관(13)에서 수증기의 양이 일정하게 유지되도록 연속적으로 흡입되도록 수증기발생장치(6)의 반대편에 설치된 흡입송풍기(8)로 구성되는 것을 특징으로 한다. 어닐링오븐, 동선, 폐가스유입부, 폐가스배기부, 수증기발생장치
Abstract:
본 발명은 폐열을 이용한 에너지 절약형 에나멜 코팅 동선용 어닐링 오븐에 관한것으로, 그 목적은 동선의 열처리에 소요되는 운전비용의 절감과 과소둔을 예방하기 위한 새로운 어닐링 오븐 구조를 제공하는데 있다. 본 발명의 구성은 에나멜 코팅 공정에서 사용되는 동선을 열처리하는 어닐링 오븐에 있어서, 어닐링 오븐(1)의 외부를 이루는 어닐링오븐 외관(11)과; 이 어닐링오븐 외관(11) 내부 길이방향으로 장치되는 어닐링오븐 내관(12)과; 상기 어닐링오븐 내관(12)의 내부에서 설치되어 유입되어 배출되는 동선(7)을 어닐링하는 동선이송가이드관(13)과; 어닐링오븐의 내부 온도를 조절하기 위해 설치되는 전기히터(2)와; 폐열을 다시 어닐링 오븐에 재순환시키는 폐가스유입부(3) 및 폐가스배기부(4)와; 열팽창에 대한 완충 작용을 수행하기 위해 어닐링오븐의 중앙부에 장착된 익스펜션 조인트(5)와; 동선의 산화를 방지하기 위해 동선의 이동방향과 역방향으로 수증기를 유입시키는 수증기발생장치(6)와; 동선이송가이드관(13)에서 수증기의 양이 일정하게 유지되도록 연속적으로 흡입되도록 수증기발생장치(6)의 반대편에 설치된 흡입송풍기(8)로 구성되는 것을 특징으로 한다. 어닐링오븐, 동선, 폐가스유입부, 폐가스배기부, 수증기발생장치
Abstract:
본 발명은 동선 표면에 에나멜 액을 코팅시키고 건조시키는 건조 오븐 장치에 대한 것으로서, 에나멜 액을 코팅시키는 코팅부(1)와, 코팅된 동선을 건조시키는 건조부(2)와, 건조 과정에서 발생되는 휘발성유기화합물 혼합가스를 재 순환 목적으로 흡입하는 송풍기(31)와 소각하는 촉매체(32)가 설치된 흡입부(3)와, 흡입된 휘발성유기화합물 혼합가스를 배기하고 가열시키는 가열부(4)와 가열·소각된 가스를 다시 건조부(2)로 유입시키는 유입부(5)로 구성되는 것을 특징으로 하는 에나멜 코팅용 건조 오븐을 제공한다. 본 발명에 의하면 흡입부(3)에 설치된 촉매를 통하여 건조 과정에서 생성된 휘발성유기화합물 혼합 가스를 소각하여 폐 가스와 열을 다시 이용함으로서 에너지 절약 효과를 극대화하면서, 적절한 대류열 전달과 난류 형성이 가능하도록 고안된 건조부의 구조를 통해 더욱 효과적이고 빠른 동선의 건조 효과를 얻을 수 있다.
Abstract:
PURPOSE: A low NOx combustion method combining catalyst combustion and swirl generation of catalyst layer and a combustion engine thereof are provided to reduce NOx generated in a high load combustion engine by decreasing the temperature of flames to a low temperature not to generate thermal NOx by employing the catalyst combustion. CONSTITUTION: A low NOx combustion method in which catalyst combustion is combined with swirl generation of a catalyst layer includes the steps of burning a mixture(1) partially in a catalyst layer(2) by a catalyst surface reaction for generating lean mixture with the heat generated by catalyst combustion to increase the burning speed of the mixture and generating swirl in the mixture by a rear wake for holding flames, and stabling burning the heated lean burn mixer(1) at a burning speed raised in a flame burning chamber(3) mounted at a rear part of the catalyst layer to discharge exhaust gas(4) with reduced NOx.
Abstract:
PURPOSE: A volatile organic compound is burned completely by a catalytic burning method in a low temperature reducing heating amount for a preheating and using the burning heat efficiently. CONSTITUTION: A burning processing device for volatile organic compound comprises a blower(110) and a heat exchanger(120) of plate type. The blower blows air including volatile organic compound to the heat exchanger. The heat exchanger of plate type is separated into an introducing passage(127) and a discharging passage(128) of the introduced air. A burning catalyst(122) is provided in the heat exchanger to burn the air in the catalytic burning method. A heater(123) is also provided to heat the introduced air. An excessive heat discharging port(125) is installed in the heat exchanger to discharge heat. A controller controls temperature by driving the heater or the excessive heat discharging port.