Abstract:
Urethane (multi)-(meth)acrylate (multi)-silane compositions, and articles including a (co)polymer reaction product of at least one urethane (multi)-(meth)acrylate (multi)-silane precursor compound. The disclosure also articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urethane (multi) (meth)acrylate (multi)-silane precursor compound. The substrate may be a (co)polymeric film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making urethane (multi)-(meth)acrylate (multi)-silane precursor compounds and their use in composite multilayer barrier films are also described. Methods of using such barrier films in articles selected from a solid state lighting device, a display device, and combinations thereof, are also described
Abstract:
A barrier film that includes a substrate, a first polymer layer on a major surface of the substrate, an oxide layer on the first polymer layer, and a second polymer layer on the oxide layer. At least one of the first or second polymer layers includes a siloxane reaction product of a secondary or tertiary amino-functional silane having at least two silane groups. A method of making the barrier film and articles and a barrier assembly including the barrier film are also disclosed.
Abstract:
Adhesive compositions are described comprising a) a non-functional isobutylene (co)polymer, b) an amine-functional poly(isobutylene) polymer, optionally an acid-functional (meth)acrylate copolymer, and optionally a tackifier.
Abstract:
The present disclosure relates to surface-modified zirconia nanoparticles, methods for making and using the same, and high index of refraction films made therefrom. The provided zirconia nanoparticles are surface modified with ligands that include N-hydroxyurea functionalities. The provided ligands also can contain compatibilizing groups that allow the provided surface-modified zirconia nanoparticles to be incorporated into an organic matrix. High index of refraction films can be made using these organic matrices.
Abstract:
Novel stress-reducing crosslinking oligomers that have application in dental restoratives, thin films, hardcoats, composites, adhesives, and other uses subject to stress reduction are described. The addition-fragmentation process of crosslinking results in a chain-transfer event that provides novel polymers that may be further functionalized. In addition, the addition-fragmentation oligomer comprises pendent functional groups that bond to a substrate by forming an ionic or covalent bond, or etch the substrate by chemically removing some material from the substrate.
Abstract:
A barrier film including a substrate; a base polymer layer adjacent to the substrate; an oxide layer adjacent to the base polymer layer; a adhesion-modifying layer adjacent to the oxide layer; and a top coat polymer layer adjacent to the adhesion-modifying layer. An optional inorganic layer can be applied over the top coat polymer layer. The inclusion of a adhesion-modifying layer provides for enhanced resistance to moisture and improved peel strength adhesion of the top coat polymer layer to the underlying barrier stack layers.
Abstract:
A catalyst for use with a phenolic resins which imparts accelerated curing at reduced temperatures. The catalyst is selected from elemental halogen or opium polyhalide compounds of the general formula: O+X(2n+1)−, where 1≤n≤4, Q is onium group, preferably selected from ammonium, sulfonium and phosphonium; and X is a halide. Each X may be the same or different and may include mixed halides such a X═Br2Cl or Cl2Br.
Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
The present disclosure provides a curable, one-part epoxy/thiol resin composition. The composition comprises an epoxy/thiol resin mixture including: an epoxy resin component including an epoxy resin having at least two epoxide groups per molecule, a thiol component including a polythiol compound having at least two primary thiol groups, and a nitrogen-containing catalyst for the epoxy resin. The epoxy/thiol resin mixture further includes metal nanoparticles (e.g., silver nanoparticles, copper nanoparticles, or both), dispersed in the epoxy/thiol resin mixture. The present disclosure provides a method of curing a curable, one-part epoxy/thiol resin composition, including providing a curable, one-part epoxy/thiol resin composition and heating the composition to a temperature of at least 50° C.
Abstract:
Novel stress-reducing crosslinking oligomers that have application in dental restoratives, thin films, hardcoats, composites, adhesives, and other uses subject to stress reduction are described. The addition-fragmentation process of crosslinking results in a chain-transfer event that provides novel polymers that may be further functionalized. In addition, the addition-fragmentation oligomer comprises pendent functional groups that bond to a substrate by forming an ionic or covalent bond, or etch the substrate by chemically removing some material from the substrate.