-
公开(公告)号:US20180174028A1
公开(公告)日:2018-06-21
申请号:US15385541
申请日:2016-12-20
Applicant: Intel Corporation
Inventor: Tsung-Han Lin , Michael Davies
Abstract: A spiking neural network (SNN) includes artificial neurons interconnected by artificial synapses, where the spiking neural network is defined to correspond to one or more numerical matrices, and neurons of the SNN include attributes to inhibit accumulation of potential at the respective neuron responsive to spike messages. Synapses of the SNN have weight values corresponding to one or more numerical matrices. Inputs are provided to the SNN corresponding to a numerical vector. Steady state spiking rates are determined for at least a subset of the neurons and a sparse basis vector is determined based on the steady state spiking rate values.
-
公开(公告)号:US20250117873A1
公开(公告)日:2025-04-10
申请号:US18906790
申请日:2024-10-04
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Nicolas C. Galoppo Von Borries
Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
-
公开(公告)号:US20250061534A1
公开(公告)日:2025-02-20
申请号:US18819073
申请日:2024-08-29
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
IPC: G06T1/20 , G06F9/30 , G06F9/38 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G06N3/084
Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.
-
54.
公开(公告)号:US12217053B2
公开(公告)日:2025-02-04
申请号:US18528340
申请日:2023-12-04
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
IPC: G06F9/30 , G06F7/483 , G06F7/544 , G06F9/38 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G09G5/393 , G06F1/16 , G06F17/16 , G06N20/00 , G06T15/00
Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
-
55.
公开(公告)号:US20230394616A1
公开(公告)日:2023-12-07
申请号:US18334733
申请日:2023-06-14
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
IPC: G06T1/20 , G06N3/063 , G06F9/38 , G06F9/30 , G06N3/084 , G06N3/044 , G06N3/045 , G06N3/04 , G06N3/08
CPC classification number: G06T1/20 , G06N3/063 , G06F9/3887 , G06F9/3895 , G06F9/3001 , G06F9/3851 , G06F9/3017 , G06N3/084 , G06N3/044 , G06N3/045 , G06N3/04 , G06N3/08
Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.
-
公开(公告)号:US11748606B2
公开(公告)日:2023-09-05
申请号:US17317857
申请日:2021-05-11
Applicant: INTEL CORPORATION
Inventor: Kamal Sinha , Balaji Vembu , Eriko Nurvitadhi , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Farshad Akhbari , Narayan Srinivasa , Feng Chen , Dukhwan Kim , Nadathur Rajagopalan Satish , John C. Weast , Mike B. MacPherson , Linda L. Hurd , Vasanth Ranganathan , Sanjeev S. Jahagirdar
IPC: G06F7/50 , G06N3/063 , G06N3/08 , G06N3/04 , G06T1/20 , G06F9/30 , G06T15/00 , G06F15/78 , G06F15/76 , G06F1/3287 , G06F1/3293 , G06N3/084 , G06N3/044 , G06N3/045 , G06T1/60
CPC classification number: G06N3/063 , G06F1/3287 , G06F1/3293 , G06F9/30014 , G06F9/30036 , G06F15/76 , G06F15/78 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06T1/20 , G06T15/005 , G06T1/60
Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
-
公开(公告)号:US20230040631A1
公开(公告)日:2023-02-09
申请号:US17881720
申请日:2022-08-05
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Nicolas C. Galoppo Von Borries
IPC: G06T1/20 , G06F9/30 , G06F9/38 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , H03M7/30 , G06K9/62 , G06N20/00 , G06F12/02 , G06F9/48 , G06F17/16 , G06N3/04 , G06N3/08 , G06T1/60 , G06T15/00
Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
-
58.
公开(公告)号:US20220357945A1
公开(公告)日:2022-11-10
申请号:US17834482
申请日:2022-06-07
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
Abstract: One embodiment provides a graphics processor comprising a memory controller and a graphics processing resource coupled with the memory controller. The graphics processing resource includes circuitry configured to execute an instruction to perform a matrix operation on first input including weight data and second input including input activation data, generate intermediate data based on a result of the matrix operation, quantize the intermediate data to a floating-point format determined based on a statistical distribution of first output data, and output, as second output data, quantized intermediate data in a determined floating-point format.
-
公开(公告)号:US20220164916A1
公开(公告)日:2022-05-26
申请号:US17541413
申请日:2021-12-03
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex compute operation.
-
公开(公告)号:US10956811B2
公开(公告)日:2021-03-23
申请号:US15664614
申请日:2017-07-31
Applicant: Intel Corporation
Inventor: Michael I. Davies , Tsung-Han Lin
Abstract: System and techniques for variable epoch spike train filtering are described herein. A spike trace storage may be initiated for an epoch. Here, the spike trace storage is included in a neural unit of neuromorphic hardware. Multiple spikes may be received at the neural unit during the epoch. The spike trace storage may be incremented for each of the multiple spikes to produce a count of received spikes. An epoch learning event may be obtained and a spike trace may be produced in response to the epoch learning event using the count of received spikes in the spike trace storage. Network parameters of the neural unit may be modified using the spike trace.
-
-
-
-
-
-
-
-
-