Abstract:
The present disclosure relates to a battery module having a housing and a stack of battery cells disposed in a receptacle area of the housing, where each battery cell has a top having a battery cell terminal and a bottom, where the top of the battery cells face outwardly away from the receptacle area. The battery module includes an integrated sensing and bus bar subassembly positioned against the stack of battery cells and has a carrier, a bus bar integrated onto the carrier, and a biasing member integrated onto the carrier. The bus bar electrically couples battery cells in an electrical arrangement, and the biasing member is between the top of each battery cell and the carrier, where the biasing member has a first material, more compliant than a second material of the carrier, and the biasing member biases the stack of battery cells inwardly toward the housing.
Abstract:
The present disclosure includes a battery module having a group of electrically interconnected electrochemical cells, a battery module terminal configured to be coupled to a load for powering the load, and an electrical path extending between the group of electrically interconnected electrochemical cells and the battery module terminal, where the electrical path includes a bus bar bridge. The battery module also includes a housing, where the group of electrically interconnected electrochemical cells is disposed within the housing, and the housing includes a pair of extensions positioned along sides of the bus bar bridge and configured to retain the bus bar bridge and to block movement of the bus bar bridge in at least one direction.
Abstract:
A bus bar including a first end comprising a first material and a second end comprising a second material and a method of manufacture are provided. The first end is designed to be coupled to a terminal of a first battery cell of a battery module and includes a first collar disposed on the first end designed to receive and surround the terminal of the first battery cell of the battery module. The second end is designed to be coupled to a terminal of a second battery cell of the battery module and includes a second collar disposed on the second end designed to receive and surround the terminal of the second battery of the battery module. The first and second batteries of the battery module are adjacent to one another. Moreover, the bus bar includes a joint electrically and mechanically coupling the first end and the second end.
Abstract:
A system includes a battery cell having a packaging and a coil disposed within the packaging. The battery cell further includes a first terminal electrically coupled to a portion the coil and protruding through an opening in the packaging, wherein the first terminal is hermetically sealed at the opening in the packaging using a compressive force.
Abstract:
A lithium ion (Li-ion) battery module includes a container with one or more partitions that define compartments within the container. Each of the compartments is configured to receive and hold a prismatic Li-ion electrochemical cell element and electrolyte. The Li-ion battery module also includes a cover configured to be disposed over the container to close the compartments. The container includes an electrically nonconductive polymeric material (e.g., plastic) with a nanomaterial applied to the polymeric material. The nanomaterial enhances the impermeability of the container to reduce ingress of moisture into the compartments and to reduce egress of the electrolyte from the compartments.
Abstract:
A lithium ion (Li-ion) battery cell includes a housing. The housing includes side walls coupled to and extending from a first portion of the housing to form an opening in the housing opposite the first portion of the housing. The housing includes an electrically nonconductive polymeric (e.g., plastic) material. An electrochemical cell element is disposed in the housing and immersed in electrolyte that is also disposed in the housing. The Li-ion battery cell also includes a cover including an electrically nonconductive polymeric material. The cover is disposed over the opening in the housing and sealed to the housing via a seal. The seal is configured to resist or prevent ingress of moisture into the housing and to resist or prevent egress of the electrolyte from the housing.
Abstract:
A lithium ion (Li-ion) battery cell includes a prismatic housing that includes four sides formed by side walls coupled to and extending from a bottom portion of the housing. The housing is configured to receive and hold a prismatic Li-ion electrochemical cell element. The housing includes an electrically nonconductive polymeric (e.g., plastic) material. Additionally, a heat sink is overmolded by the polymeric material of the housing, such that the heat sink is retained in an outer portion of the sides of the housing and the heat sink is exposed along the bottom portion of the housing.
Abstract:
A battery includes a cell element that is disposed in a housing, and the housing is sealed with a top cover made primarily of plastic. The top cover may include a layer of metallic foil, which may make the top cover more impermeable to moisture. The top cover may also include a vent, which may or may not utilize the metallic foil to determined the primary opening force of the vent. The top cover may also have one or more stiffening ribs that extend downwardly from a bottom portion of the top cover to contact the cell element, so as to limit movement of the cell element within the housing. In addition, the top cover may have one or more conductive terminals that are at least partially overmolded by the plastic of the top cover.
Abstract:
A system includes a battery cell having a packaging and a coil disposed within the packaging. The battery cell further includes a first terminal electrically coupled to a portion the coil and protruding through an opening in the packaging, wherein the first terminal is hermetically sealed at the opening in the packaging using a compressive force.