Abstract:
A dual micro-electromechanical actuator for providing dual actuation to a micromachine. The actuator includes a first substrate upon which a first actuating electrode is formed. A second substrate located proximate to but spaced from the first substrate supports a second actuating electrode. A micromachine device, such as a thin membrane, plate or cantilever, is disposed between the actuating electrodes. When one of the actuating electrodes is selectively activated by applying a voltage thereto, an electrostatic attraction force is produced which causes movement of the micromachine in the direction of the activated actuating electrode.
Abstract:
A method for pivoting an optical device about one or more axes thereof is disclosed. Springs couple the optical device to the micro-electro-mechanical structure. A portion of the springs are fastened on the micro-electro-mechanical structure. Fastening the portion of each spring on the electro-mechanical structure prevents the springs from moving the optical device in a translational direction when such optical device pivots about the one or more axes.
Abstract:
An optical crossconnect (OXC) fabric including an array of tiltable mirrors, a reflector and a plurality of optical fibers controls the position of the mirrors to optimize the transfer of a signal between an input optical fiber and an output optical fiber by monitoring the optical signal at an optical translation unit in each of the input optical fiber and the output optical fiber. The optical translation units are operable for regenerating the optical signals transmitted through the fibers.
Abstract:
A micro-opto-electromechanical systems (MOEMS) device comprises a micro-electromechanical systems (MEMS) device and a silicon optical-bench (SiOB) device or system. The MEMS device interacts with the SiOB mechanically or electromagnetically. In one embodiment, the MEMS device is operable to provide a switching function for the SiOB device. The MEMS device comprises an actuator that is mechanically linked to an optical interruptor that prevents at least a portion of an optical signal incident thereon from propagating therethrough. In an actuated state, the actuator causes the optical interruptor to move into an optical path of an optical signal traveling through an SiOB device. The signal is at least partially reflected or absorbed such that only a portion of the signal propagates beyond the point of contact with the optical interruptor. Since SiOB processing is typically incompatible with MEMS device processing, the MEMS and SiOB devices are formed on separate supports and then attached, such as via flip-chip bonding methods.
Abstract:
A self-assembling micron-sized mechanical device is described. The device comprises hinged plates attached to a support. A beam having a first end free to move in an upwardly-directed arc is associated with each hinged plate comprising the device. The beam has a first engagement member, including a first angled edge, disposed at its freely-movable first end. Each hinged plate includes a second engagement member, including a second angled edge. In the unassembled state, at least a portion of the first engagement member lies beneath the second engagement member on the support. Actuation force is applied to the beam by an actuator, the force causing the first end of the beam to lift. As it does so, the first and second angled edges slide over another, and the hinged plate is rotated upwardly about its hinges away from the support. The mechanical advantage provided by the angled edges allows a hinged plate to be rotated fully ninety degrees away from the support.
Abstract:
A micromachined xyz stage, and microscopes utilizing such a stage, are disclosed. The xyz stage includes co-planar x- and y-drive means linked to a sample stage. Such x- and y- drive means are operable to position the sample stage in an x-y plane. The xyz stage further includes z-drive means operable to moves the sample stage out of the x-y plane. The z-drive means can be implemented by suspending a flat-plate electrode over the sample stage using hinged plate supports. As a voltage is applied across the plate electrode and the sample stage, an electrostatic force is generated, causing the sample stage to move towards the plate electrode. The hinged plate supports facilitate assembly of the z-drive means, in addition to providing support for it in its assembled configuration. By incorporating an optical fiber, the aperture of which has be drawn down to submicron size, a near-field scanning optical microscope can be formed. By forming a micromachined tip on the xyz stage, a scanning tunneling microscope or an atomic force microscope can be formed.
Abstract:
The specification describes a refractive lens for focusing cold neutrons. It comprises a plurality of concave lens elements made from materials with low neutron absorption.
Abstract:
Optical switches utilizing electrostatically-driven actuators formed from micro machined plates are disclosed. Under an applied voltage, a movable plate moves toward a fixed plate or a conductive region of an underlying support. The switches further include a mechanical linkage from the actuator to an optical device. The displacement of the movable plate generated at the actuator is transferred, via the mechanical linkage, to the optical device. The optical device, which is positioned in close proximity to optically-aligned spaced optical fibers, is movable into and out of an optical path defined by the optical cores of the optical fibers by the action of the actuator. An "in-plane" optical switch includes an actuator having two vertically-oriented electrodes, which generates a substantially horizontally-directed displacement of the movable plate and the linked optical device. An "out-of-plane" optical switch includes an actuator having at least one horizontally-disposed suspended above a conductive region of an underlying support. The actuator generates a substantially vertically-directed displacement of the movable plate and the linked optical device.