Abstract:
Systems and methods for Carrier Sense Adaptive Transmission (CSAT) communication in unlicensed spectrum are disclosed. Interference between Radio Access Technologies (RATs) may be reduced utilizing CSAT by, for example: receiving signals via a resource, wherein a first RAT is used to receive the signals; identifying utilization of the resource associated with the first RAT, wherein the identification is based on the received signals; cycling operation of a second RAT between activated and deactivated periods of transmission over the resource in accordance with a Time Division Multiplexing (TDM) communication pattern, wherein the cycling is based on the identified utilization of the resource; and transmitting an Activation / Deactivation Medium Access Control (MAC) Control Element (CE) to a user device associated with the second RAT to activate or deactivate the user device in accordance with the TDM communication pattern.
Abstract:
Systems and methods for interference mitigation in unlicensed spectrum are disclosed. In an aspect, the methods and apparatus may include requesting, by a first network entity, one or more user equipments (UEs) to perform a plurality of frequency measurements, wherein the plurality of frequency measurements comprises measurements in a licensed spectrum and measurements in an unlicensed spectrum. Further, the methods and apparatus may include calculating a power back-off value based on the plurality of frequency measurements. Moreover, the methods and apparatus may include adjusting a cell coverage based on the power back-off value such that the one or more UEs are outside the cell coverage.
Abstract:
Systems and methods for managing communication in an unlicensed band of frequencies to supplement communication in a licensed band of frequencies in unlicensed spectrum are disclosed. The management may comprise, for example, monitoring utilization of resources currently available to a first Radio Access Technology (RAT) via at least one of a Primary Cell (PCell) operating in the licensed band, a set of one or more Secondary Cells (SCells) operating in the unlicensed band, or a combination thereof. Based on the utilization, a first SCell among the set of SCells may be configured or de-configured with respect to operation in the unlicensed band.
Abstract:
Techniques for managing contention on a shared communication medium are disclosed. Various techniques are provided to facilitate aspects such as reference signaling, downlink medium access, uplink medium access, resource reuse, channel structures, acknowledgment schemes, fairness, acquisition, random access, paging, mobility, inter-operator mitigation, and so on for a frame structure implemented on the shared communication medium.
Abstract:
Aspects for reducing interference between networks are provided. A signal transmitted by a first network over a communications medium using an unlicensed frequency spectrum is decoded to determine one or more parameters of a packet in the signal. A level of utilization of the communications medium by the first network can be estimated based at least in part on a signal strength of the signal and the one or more parameters. A time for communicating in a second network over the communications medium using the unlicensed frequency spectrum can be adjusted based at least in part on the level of utilization of the communications medium by the first network.
Abstract:
Systems and methods for Carrier Sense Adaptive Transmission (CSAT) and related operations in unlicensed spectrum are disclosed to reduce interference between co-existing Radio Access Technologies (RATs). The parameters for a given CSAT communication scheme may be adapted dynamically based on received signals from a transceiver for a native RAT to be protected and an identification of how that RAT is utilizing a shared resource such as an unlicensed band. Other operations such as Discontinuous Reception (DRX) may be aligned with a CSAT Time Division Multiplexed (TDM) communication pattern by way of a DRX broadcast / multicast message. Different TDM communication patterns may be staggered in time across different frequencies. Channel selection for a co-existing RAT may also be configured to afford further protection to native RATs by preferring operation on secondary channels as opposed to primary channels.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving PCI selection and/or allocation so as to reduce interference from unloaded cells. In one example, a network entity is equipped to determine whether a cell is loaded or unloaded, and allocate a PCI from a common pool of PCIs to the cell when the cell is unloaded. In another example, a network entity is equipped to determine that a cell is to transition between an unloaded state and a loaded state, and use a first PCI from a common PCI pool associated with the cell in the unloaded state and a second PCI associated with the cell in the loaded state. In another example, a communications device is equipped to attempt to access a first cell associated with a first PCI which indicated that the first cell is unloaded.
Abstract:
Techniques for synchronization on a shared communication medium are disclosed. An access point may select, for example, a common sequence, frequency, and time for a first synchronization signal that is coordinated with one or more other access points. The access point may then transmit the first synchronization signal in accordance with the common sequence, frequency, and time. An access terminal may receive, from an access point, a first synchronization signal having a first sequence and a second synchronization signal having a second sequence. The access terminal may then determine an offset in time between the first synchronization signal and the second synchronization signal, and determine a cell identifier group associated with the access point based on the offset.
Abstract:
Shared spectrum operation is disclosed for sharing spectrum among multiple wireless deployments. Coordination procedures between and among 2nd and 3rd Tier deployments include the use of beacons transmitted by the 2nd Tier for clearing access to spectrum occupied by 3rd Tier users and multiple 3rd Tier deployments sharing resources using a group-listen before talk (LBT) protocol, rather than a per-node LBT protocol. The 2nd Tier beacon signals are transmitted to alert 3rd Tier users of their presence, which, upon detection, will leave the particular spectrum within a predetermined time. For the shared LBT protocol, the 3rd Tier deployments share the channel with each other through an LBT with random backoff, in which the start time of clear channel assessment (CCA) procedure and the random backoff values are synchronized among nodes of the same deployment.
Abstract:
Techniques for managing operation on a communication medium shared between Radio Access Technologies (RATs) are disclosed. The management may comprise, for example, monitoring the medium for first RAT signaling in accordance with a first RAT; determining a utilization metric associated with utilization of the medium by the first RAT signaling; cycling operation in accordance with a second RAT between activated periods and deactivated periods of communication over the medium in accordance with a Time Division Multiple Access (TDM) communication pattern based on the utilization metric; and periodically disabling the cycling to provide an AOS period of activated communication over the medium for operation in accordance with the second RAT, with the AOS period being longer than an individual activated period of the TDM communication pattern. The management may also comprise, for example, techniques for enabling / disabling monitoring by an access terminal in accordance with the TDM communication pattern.