Abstract:
Methods, systems, and devices for wireless communications in a multiple bandwidth part environment are described. In response to a serving beam failure in an active bandwidth part, the UE may determine a level of support provided by the active bandwidth part for a random access procedure, and may determine a contingency (e.g. fallback) bandwidth part that supports the random access procedure. In some cases, the UE may identify the contingency bandwidth as an initial bandwidth part used by the UE for a prior random access procedure. In some cases, the base station may send to the UE, an explicit indication of the contingency bandwidth part. In some cases, the UE may identify the contingency bandwidth part based on a reference signal. Upon determining the contingency bandwidth part, the UE may perform the random access procedure using the contingency bandwidth part.
Abstract:
Techniques and apparatus for configuring transmission rank and/or precoder(s) to support uplink non-codebook based transmission are provided. One technique includes receiving sounding reference signal (SRS) resource(s) from a user equipment (UE), where each SRS resource is associated with one or more precoded ports. At least one of a transmission rank or a set of precoders is determined based on the SRS resource(s). An indication of at least one of the SRS resource(s) is signaled to the UE. The UE uses the indication of the at least one of the SRS resource(s) to send an uplink transmission.
Abstract:
Aspects of the present disclosure provide methods and apparatus for selecting beamforming parameters for uplink transmissions based on an uplink reference signal. An example method generally includes identifying one or more parameters for beamformed transmission to a transmit receive point (TRP), transmitting a reference signal using beamforming in accordance with the identified parameters, and receiving, from the TRP in response to the reference signal, signaling for adjusting the one or more parameters for one or more subsequent beamformed transmissions.
Abstract:
Aspects of the present disclosure provide methods and apparatus for selecting beamforming parameters for uplink transmissions based on an uplink reference signal. An example method generally includes identifying one or more parameters for beamformed transmission to a transmit receive point (TRP), transmitting a reference signal using beamforming in accordance with the identified parameters, and receiving, from the TRP in response to the reference signal, signaling for adjusting the one or more parameters for one or more subsequent beamformed transmissions.
Abstract:
A hybrid class B channel state information (CSI) reference signal (CSI-RS) scheme is discussed which configures one cell-common beamformed CSI-RS resource for beam tracking and another UE-specific beamformed CSI-RS resource for CSI feedback. The cell-common beamformed CSI-RS resource may be transmitted at a longer periodicity and shared by user equipments (UEs) in the cell. The beamforming may be cycled over a set of predefined weights transparent to UE. The UE-specific beamformed CSI-RS may be transmitted at a shorter periodicity and can be activated dynamically to allow resource sharing among multiple UEs. The UEs will report a CSI for the cell-common beamformed CSI-RS resource which provides a quality indicator for the associated cell-common beam and is utilized by the base station to determine the precoding weight for the UE-specific beamformed CSI-RS resource. Both resources can be configured with different parameter sets, such as number of ports, codebook type, and CSI reporting parameters.
Abstract:
Aspects of the present disclosure provide methods and apparatus for selecting beamforming parameters for uplink transmissions based on an uplink reference signal. An example method generally includes identifying one or more parameters for beamformed transmission to a transmit receive point (TRP), transmitting a reference signal using beamforming in accordance with the identified parameters, and receiving, from the TRP in response to the reference signal, signaling for adjusting the one or more parameters for one or more subsequent beamformed transmissions.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE receives RSs from a base station. The UE determines, based on the RSs, a second CSI indicator indicating a first precoding configuration of the base station optimized to at least one of improve signal power or reduce interference in an elevation dimension. The UE determines, based on the RSs, a second CSI indicator indicating a second precoding configuration of the base station optimized to at least one of improve the signal power or reduce interference in an azimuth dimension. The UE transmits, to the base station, a first CSI report including at least the first CSI indicator.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for linear precoding in full-dimensional MIMO (FD-MIMO) systems. According to aspects, an eNB may compress a larger number of antenna elements to a smaller number of antenna ports. The eNB may use a port precoding matrix to transmit reference signals to a UE, receive feedback regarding CSI based on the reference signals, and transmit data to the UE, based on a mapping of multiple data layers and mapping of antenna ports to the physical antenna elements. Further, aspects include performing elevation beamforming by dynamically forming one or more vertical sectors based on UE feedback in the elevation domain.
Abstract:
Certain aspects of the present disclosure provide techniques for performing periodic and aperiodic CSI reporting for MIMO operations. According to certain aspects, operations for performing periodic and aperiodic CSI reporting for MIMO generally includes configuring a user equipment (UE) that is capable of MIMO with different parameters for periodic and aperiodic channel state information (CSI) reporting, wherein the different parameters indicate at least one of what resources to measure or what in formation to report, and receiving periodic and aperiodic CSI reporting from the UE according to the configuration.