Abstract:
Methods, systems, and devices are described for wireless communication at a wireless communication device. A wireless communication device may receive a data frame and use it to estimate a residual channel length (RCL). The device may then modify a finite impulse response (FIR) filter based on the estimated RCL. For example, the device may add additional taps to the FIR filter. The device may continue to adjust the FIR filter until the RCL is at or near zero. In some cases, the wireless communication device may send an indication to the transmitting device to adjust an FIR filter based on the estimated RCL. In some cases, the length of a guard interval may also be adjusted based on the estimated RCL.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, and implementing lower power modes with various modes of the device. According to one aspect, the mode of the device may be a beacon monitoring mode or a delivery traffic indication message (DTIM) mode. In such a mode, the device may receive a portion of a beacon in a first power mode. The device may transition to a second, different (e.g., higher) power mode using information contained in the received portion of the beacon as guidance.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
Abstract:
A wireless communication device having a root complex, a WLAN module, a power module and an interface linking the root complex and the WLAN module, wherein the root complex is configured to implement a power management policy based upon a latency tolerance value for the WLAN module and wherein the power module is configured to adjust the latency tolerance value based upon receive and transmit parameters of the WLAN module. The power module may be configured to adjust the latency tolerance value on a per-frame basis.
Abstract:
This disclosure describes techniques for operating a client device to communicate with a wireless access point to validate data within a frame by comparing channel quality metrics and duration metrics to thresholds. Information received within a validity window may be treated as correctly received even if the frame fails a subsequent verification process or if reception of the frame is terminated prior to the end of the frame.
Abstract:
A method of saving power in a wireless network can include determining a plurality of stations associated with an AP. The AP can create station groups using group selection logic. Notably, the group selection logic is transparent to the plurality of stations. A plurality of TIMs can then be sent, each TIM allowing only one station group access to a channel during a predetermined time interval, such as a beacon interval. In another method, a station can determine its sleep duration based on at least one of first information from the TIM to generate random sleep duration, second information regarding previous operation of the station, and third information regarding a status of the station. The first, second, and third information can include the number of stations associated with the AP and having buffered data based on the TIM, historical collisions, and power status.