Abstract:
In an example, a method including dispensing a liquid onto a first portion of a surface of a substrate and dispensing a solution comprising colloidal spheres onto a second portion of the surface of the substrate. The method additionally includes agitating the colloidal spheres to disperse the colloidal spheres along the first portion and the second portion of the surface of the substrate and directing air flow above the colloidal spheres inducing rotation of the colloidal spheres. In another example, a method includes positioning a retaining ring on a surface of a liquid above a substrate below the surface of the liquid and dispensing a solution comprising colloidal spheres onto the surface of the liquid within a surface area of the retaining ring. The method further includes agitating the surface of the liquid and the colloidal spheres to disperse the colloidal spheres along the surface area of the retaining ring.
Abstract:
The present disclosure is directed to methods for preparing nanoparticle monolayers on a sub-phase by controlling the spreading rate of the nanoparticles. The nanoparticles are first prepared in a nanoparticle solution at a predetermined concentration with a solvent. The sub-phase solution is prepared to have a density and viscosity compatible with the desired spreading rate. Additives, such as glycerol, are used to alter the density of the sub-phase solution. A volume of nanoparticle solution is deposited on the surface of the sub-phase solution and allowed to spread in a controlled manner on the unconstrained surface, forming a uniform nanoparticle monolayer. A substrate is then placed in contact with the nanoparticle monolayer to form a uniform nanoparticle coating on the surface of the substrate.
Abstract:
A process for depositing a compact film of particles on an internal surface of a part, including: a) placing the part in a carrier liquid; b) generating a carrier liquid stream in a hollow of the part towards a surface of the carrier liquid, to create a protuberance; c) dispensing the particles to form a compact film floating on the liquid between a contact line and an upstream front of particles; and d) transferring the film onto the internal surface by operating a relative displacement between the part and the surface of the carrier liquid, while continuing dispensing the particles on the upstream front.
Abstract:
An installation for forming a compact film of particles on a surface of a carrier fluid, including: a zone acting as a reservoir of carrier fluid; an inclined ramp; a particle storage and transfer zone situated extending from the inclined ramp; a mechanism moving the fluid; a mechanism dispensing the particles in solution, configured to dispense the particles at the surface of the carrier on the surface of the carrier fluid in the zone acting as a reservoir; and a mechanism raising a level of the carrier fluid by capillary effect, arranged at a junction between the zone acting as a reservoir and the inclined ramp.
Abstract:
A process for depositing a compact film of particles on an internal surface of a part, including: a) placing the part in a carrier liquid; b) generating a carrier liquid stream in a hollow of the part towards a surface of the carrier liquid, to create a protuberance; c) dispensing the particles to form a compact film floating on the liquid between a contact line and an upstream front of particles; and d) transferring the film onto the internal surface by operating a relative displacement between the part and the surface of the carrier liquid, while continuing dispensing the particles on the upstream front.
Abstract:
An installation for forming a compact film of particles on a surface of a carrier fluid, including a zone acting as a reservoir of carrier fluid, an inclined ramp, a particle storage and transfer zone, a mechanism moving the carrier fluid, a mechanism for dispensing the particles in solution, configured to dispense the particles on the surface of the carrier fluid in the zone acting as a reservoir, and a structure for deflecting the particles configured to favor, along a transverse direction of the installation, spreading of the particles at the outlet of the zone acting as a reservoir. The structure for deflecting particles is permeable to the carrier fluid.
Abstract:
The invention concerns in particular a method for depositing a nanometric multilayer thin film on a substrate from a liquid solution containing at least one surfactant. The method includes the following steps: forming a film from the solution; contacting the substrate; and depositing the film on the substrate. The invention is particularly formed to enable depositing black films on different types of surfaces, in particular for obtaining highly organized films. The films obtained by the method are particularly useful in electronics and optics.
Abstract:
A method for the self assembly of a macroscopic structure with a pre-formed nano object is provided. The method includes processing a nano object to a desired aspect ratio and chemical functionality and mixing the processed nano object with a solvent to form a suspension. Upon formation of the suspension, a substrate is inserted into the suspension. By evaporation of the solvent, changing the pH value of the suspension, or changing the temperature of the suspension, the nano objects within the suspension deposit onto the substrate in an orientational order. In addition, a seed crystal may be used in place of the substrate thereby forming single-crystals and free-standing membranes of the nano-objects.
Abstract:
A method for the self assembly of a macroscopic structure with a pre-formed nano object is provided. The method includes processing a nano object to a desired aspect ratio and chemical functionality and mixing the processed nano object with a solvent to form a suspension. Upon formation of the suspension, a substrate is inserted into the suspension. By either evaporation of the solvent, changing the pH value of the suspension, or changing the temperature of the suspension, the nano objects within the suspension deposit onto the substrate in an orientational order. In addition, a seed crystal may be used in place of the substrate thereby forming single-crystals and free-standing membranes of the nano-objects.
Abstract:
A method for the self assembly of a macroscopic structure with a preformed nano object is provided. The method includes processing a nano object to a desired aspect ratio and chemical functionality and mixing the processed nano object with a solvent to form a suspension. Upon formation of the suspension, a substrate is inserted into the suspension. By either evaporation of the solvent, changing the pH value of the suspension, or changing the temperature of the suspension, the nano objects within the suspension deposit onto the substrate in an orientational order. In addiiton, a seed crystal may be used in place of the substrate thereby forming single-crystals and free-standing membranes of the nano-objects.