Abstract:
An elevator system includes a control for controlling an elevator into an idle state and/or for cancelling the idle state. The elevator system is configured to receive data from a control circuit external to the elevator system, and the control is arranged to form a control command for controlling the elevator into an idle state and/or for cancelling the idle state on the basis of data received from a control circuit external to the elevator system.
Abstract:
An elevator system includes at least one elevator, at least one call input device and a call controller. The call input device transmits a call to the call controller. For a transmitted normal operation signal, at least one elevator car of an assigned elevator is activated to drive to the call input floor by at least one elevator controller of the assigned elevator. In a peak-time mode of the elevator system, at least one main operation signal is transmitted to at least one elevator. For a main operation signal transmitted to an elevator, at least one elevator car of said elevator is activated to drive between at least two main operation floors by at least one elevator controller of said elevator.
Abstract:
When an average wait time is low (23, 24) an elevator car (31-34) is parked (39), unable to answer calls, or if a parameter (45) is low (46), the car is shut-down. If wait time is high, a parked car is assigned the call. If no cars are parked, a shut-down car may be assigned based on RRT. If up running cars can answer the call, the down running cars are excluded.
Abstract:
An elevator control system employing a micro-processor-based group controller (FIG. 2) which communicates with the cars (3, 4) of the elevator system to determine conditions of the cars and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, to provide assignments of the hall calls to the cars based on the summation for each car, with respect to each call, a weighted summation of a plurality of system response factors, some indicative, and some not, of conditions of the car irrespective of the call to be assigned, assigning "bonuses" and "penalties" to them in the weighted summation. In the invention, rather than a set of unvarying bonuses and penalties being assigned based on the relative system response factors, the assigned bonuses and penalties are varied based on the perceived intensity of traffic, as measured by, for example, a past average waiting time and the elapsed time since registration of the hall call, a selected past five minute average waiting time being exemplary. Exemplary apparatus (FIGS. 1 and 2) and a logic flow diagram (FIG. 3) illustrate a specific manner of assigning calls to cars. Tables set forth exemplary varying bonus and penalty values to be assigned, depending on the ratio of the hall call registration time to the selected average hall call waiting time (Tables 1 and 2) or on their differences (Table 3).
Abstract:
An elevator system including supervisory system control for controlling a plurality of elevator cars to answer calls for elevator service. The supervisory system control, using information provided by the cars, groups the floors of a building, and service directions therefrom, into sets, each of which indicates those floors and service directions served by the same combination of in-service elevator cars. The supervisory system control periodically determines, for each set, the average number of floors and service directions therefrom, and the average number of calls, per in-service elevator car serving the set. The supervisory system control then assigns floors and service directions therefrom to the cars, using these averages, to substantially equally distribute the floors, and service directions therefrom, for each set, among the elevator cars serving the set, as well as to substantially equally distribute the calls for elevator service among the elevator cars.
Abstract:
In an elevator control device that transfers an elevator to pause operation when predetermined pause conditions are met, the elevator operation can be changed over properly according to the call cutoff state without decreasing the building security. This control device includes a pause operation selecting means and a car call cutoff means. The pause operation selecting means stops a car at a predetermined pause floor, closes a door after door opening motion, and pauses the elevator by selecting pause operation if predetermined pause conditions are met. The car call cutoff means prohibits a car call from being registered from a car call button in the car by cutting off the car call. The configuration is made such that when the car call to the pause floor has been cut off by the car call cutoff means, even if the predetermined pause conditions are met, the elevator is not transferred to pause operation.
Abstract:
According to the present invention, when a parking floor is set as a remote-hall-operating-panel-installed floor, the parking floor can be canceled. As a result of this, during the movement of a passenger from a remote hall operating panel to an elevator hall, it is possible to prevent a car from being on standby at a remote-hall-operating-panel-installed floor. Therefore, because a car to which a remote hall registration has been assigned can effectively use the moving time of the passenger and hence it is possible to improve the operation efficiency of the whole group supervisory control system. Furthermore, it is possible to reduce useless runs and hence to reduce power consumption.
Abstract:
An elevator system can be operated while recording the energy consumption of at least one energy consumer of the elevator system and at least one traffic situation of the elevator system. At least one energy consumption value is determined for the recorded energy consumption and the recorded traffic situation, and the calculated energy consumption value is output to at least one output means.
Abstract:
The present invention pertains to a method for optimal routing of the elevators in an elevator system in a situation where the supply power received by the system is limited e.g. due to emergency power operation. In the invention, routes are optimized by using a cost function to which has been added a term containing the summed instantaneous power consumed. Power consumption is monitored in real time, and the elevators need a start permission from the control system. A route alternative that exceeds the power limit is penalized in the cost function by a so-called penal term. With the elevator routing obtained as a result, the instantaneous power consumed by the system remains continuously below the set power limit. Some call can thus be postponed to be served later. By the method of the invention, the number of elevators serving passengers in an emergency power situation can be varied dynamically.
Abstract:
A device for reducing the energy consumption is used in an elevator installation which can be alternatively brought into an operating mode and a standby mode wherein in the standby mode the elevator installation is separated from a main energy source and connected with an auxiliary energy source, by means of which basic functions of the elevator installation are maintained so as to enable later entry into the operating mode. The device includes a detecting unit in order to detect a use criterion describing the current use status of the elevator installation. Moreover, a power-saving unit with a microprocessor is provided in order to bring the elevator installation from the operating mode to the standby mode in the case of non-fulfillment of the use criterion and fulfillment of standby criteria and to bring it from the standby mode to the operating mode in the case of non-fulfillment of the standby criteria.