Abstract:
A motor pump (10) includes a pump head (22) for pressurizing a fluid and an electric motor for driving the pump head. Within the pump head, radial forces produced in two symmetrical pumping zones are balanced against each other to reduce stress and increase efficiency. High pressure fluid exits the pump and follow a flowpath through the motor air gap, through an end bearing carrying a distal end of a hollow pump rotor shaft, and returning to the pump head by way of the hollow rotor shaft (44) . The motor rotor shaft (44) is axially movable with respect to the pump head, which effectively floats the motor rotor in high pressure fluid. A motor stator barrier (56) can inhibits fluid flow into the motor stator (90) , and a rotor barrier (112) can inhibits fluid flow into the motor rotor. The rotor barrier can is efficiently attached to the rotor shaft in such a way as to stiffen the shaft and increase its bending resistance. The walls of the stator barrier can are thin and expand under fluid pressure to make contact with and find structural support from the stator laminations and motor endshield. Overheat conditions within the motor, as well as the pump head, are detected by positioning a heat sensing switch (130) within the motor adjacent the pump head (22) to shut down the motor (14) when an overheat condition is detected.
Abstract:
Bei einem Druckerzeuger für strömende Medien, bei dem mittels eines drehzahlsteuerbaren Motors (M) ein Verdichter (V) antreibbar ist, wird durch mindestens einen Sensor (T) die Temperatur im Verdichter (V) erfasst und entsprechend der Temperatur wird der Motor (M) geregelt. Die thermischen Grenzen der Maschine werden dabei mit Sicherheit eingehalten und es kann auf übliche Druckbegrenzungsventile zum Schutz des Verdichters (V) verzichtet werden.
Abstract:
The invention relates to a method for detecting the temperature of a hydraulic braking system in a motor vehicle. The temperature of the hydraulic pump is detected by measuring the motor voltage (U>m
Abstract:
The invention relates to a pneumatic suspension system, especially for motor vehicles, with a compressor which can be switched on and off as necessary depending on parameters by an automatic computer-supported control system. The computer of the control system provides an estimate of the operating temperature of the compressor on the basis of experimental values so that said compressor can be switched off when a predetermined threshold is exceeded.
Abstract:
Even when abnormal heat generation occurs during operation in a state where the temperature of a compressor is not increased, abnormality cannot be detected. A fluid machine includes a fluid machine body; a motor that drives the fluid machine body; a temperature sensor that measures a temperature of the fluid machine body; and a control unit that controls the fluid machine body. The control unit changes a temperature threshold value based on at least one of a pressure of a fluid discharged by the fluid machine body and a frequency of a voltage input into the motor, and issues a notification when the temperature of the compressor body measured by the temperature sensor exceeds the temperature threshold value.
Abstract:
Systems and methods are provided and include a compressor for a refrigeration system and a duct assembly that includes a duct frame and a sensor unit. The duct frame provides a path for evaporating refrigerant from a lubricant sump of the compressor. The sensor unit obtains temperature measurements of the refrigerant and a lubricant within the lubricant sump and heats and evaporates the refrigerant located within the duct frame of the duct assembly. A control module receives temperature measurements from the sensor unit, determines a presence of liquid refrigerant within the lubricant sump of the compressor in response to a determination that an actual temperature change does not correspond with an expected temperature change for the lubricant, and in response to a determination that the actual temperature change corresponds with the expected temperature change for the lubricant, operates the compressor.
Abstract:
A pump includes a pump housing, an inlet, an outlet, a rotatable eccentric, a deformable element between housing and eccentric and a delivery channel from inlet to outlet formed by the deformable element and the housing. The deformable element is pressed against the housing in sections by the eccentric forming a movable seal of the channel and a closed volume in the channel being movable along the channel from inlet to outlet to pump the liquid by rotating the eccentric. A method for operating the pump includes a) setting a liquid quantity to be pumped, b) determining a temperature of the deformable element, c) determining a parameter considering the temperature from step b), the parameter representing a dependence between movement of the eccentric and pump capacity and d) pumping the liquid quantity set in step a) by adapting an operating mode of the pump considering the parameter from step c).
Abstract:
A system and method for flooded start control of a compressor for a refrigeration system is provided. A temperature sensor generates temperature data corresponding to at least one of a compressor temperature and an ambient temperature. A control module receives the temperature data, determines an off-time period since the compressor was last on, determines an amount of liquid present in the compressor based on the temperature data and the off-time period, compares the amount of liquid with a predetermined threshold, and, when the amount of liquid is greater than the predetermined threshold, operates the compressor according to at least one cycle including a first time period during which the compressor is on and a second time period during which the compressor is off.
Abstract:
Process for regulating a compressor with motor for a refrigerating system, where the temperature of the cooling site is regulated through an on-off motor mode if the temperature in the compressor exceeds an upper temperature threshold. In addition, the temperature of the cooling site is regulated through a continuous on mode of the motor as soon as the motor has cooled to a lower temperature threshold. The controller converts a variable corresponding to the cooling requirement of the cooling site into a switch signal for a valve, which results in clocked opening and closing of the valve, or uses a frequency converter, which controls the cooling liquid flow through the compressor by regulating the voltage and the frequency of the motor in that the frequency converter converts a variable corresponding to the cooling requirement of a cooling site into a voltage and a frequency for the motor.
Abstract:
A fluid pumping system includes a fluid pump, an actuator coupled to said fluid pump, and a controller operatively coupled to the actuator. The controller is configured to detect an irregular condition of at least one of the fluid pump, the actuator or the controller, and upon detecting the irregular condition, modify at least one operating parameter of the actuator to prevent the irregular condition from transitioning to a fault condition.