Abstract:
A spectroscopy system includes a light source having an input light source, including semiconductor diodes generating an input beam with a wavelength shorter than 2.5 microns. Cladding-pumped fiber amplifiers receive the input beam and form an amplified optical beam having a spectral width. A nonlinear element broadens the spectral width of the amplified optical beam to 100 nm or more through a nonlinear effect forming an output beam that is pulsed. A filter is coupled to at least one of a lens and a mirror that receives the output beam and delivers the filtered output beam to a sample. A detection system includes detectors configured to receive the output beam reflected or transmitted from the sample. The detection system is configured to use a lock-in technique with the pulsed output beam and the spectroscopy system is adapted to detect chemicals in the sample.
Abstract:
A super continuum light source includes an input light source having semiconductor diodes generating an input beam having a wavelength shorter than 2.5 microns. Optical amplifiers receive the input beam and form an amplified optical beam having a spectral width. The optical amplifiers may include a cladding-pumped fiber amplifier doped with rare-earth materials. A nonlinear element may include mid-infrared fibers to receive the amplified optical beam and to broaden the spectral width of the received amplified optical beam to 100 nm or more through a nonlinear effect forming an output beam, wherein the output beam is pulsed. At least a portion of the output beam is in a mid-infrared wavelength range between 2 microns and 5 microns and at least a portion of the one or more mid-infrared fibers comprises a ZBLAN fluoride fiber coupled to a chalcogenide fiber.
Abstract:
A white light spectroscopy system includes a super continuum light source having an input light source including semiconductor diodes to generate an input beam having a wavelength shorter than 2.5 microns. The light source includes a cladding-pumped fiber optical amplifier to receive the input beam, and a photonic crystal fiber to receive the amplified optical beam to broaden the spectral width to 100 nm or more forming an output beam in the visible wavelength range. The output beam is pulsed with a repetition rate of 1 Megahertz or higher. The system also includes a lens and/or mirror to receive the output beam, to send the output beam to a scanning stage, and to deliver the received output beam to a sample. A detection system includes dispersive optics and narrow band filters followed by one or more detectors to permit approximately simultaneous measurement of at least two wavelengths from the sample.
Abstract:
A diagnostic system includes a semiconductor light emitter(s) configured to generate an input beam having a wavelength shorter than about 2.5 microns. An optical amplifier(s) configured to receive a portion of the input beam communicates an intermediate beam to an output end of the optical amplifier. An optical fiber(s) configured to receive a portion of the intermediate beam forms an output beam with an associated wavelength. A subsystem having lenses or mirrors receives a received portion of the output beam and delivers a delivered portion of the output beam to a sample. The delivered portion has a temporal duration greater than approximately 30 picoseconds and a repetition rate between continuous wave and Megahertz or higher. A time averaged intensity of the delivered portion is less than approximately 50 MW/cm2. A light detection system collects and analyzes a fraction of the delivered portion that reflects or transmits from the sample.
Abstract:
A diagnostic system includes a semiconductor light emitter(s) configured to generate an input beam having a wavelength shorter than about 2.5 microns. An optical amplifier(s) configured to receive a portion of the input beam communicates an intermediate beam to an output end of the optical amplifier. An optical fiber(s) configured to receive a portion of the intermediate beam forms an output beam with an associated wavelength. A subsystem having lenses or mirrors receives a received portion of the output beam and delivers a delivered portion of the output beam to a sample. The delivered portion has a temporal duration greater than approximately 30 picoseconds and a repetition rate between continuous wave and Megahertz or higher. A time averaged intensity of the delivered portion is less than approximately 50 MW/cm2. A light detection system collects and analyzes a fraction of the delivered portion that reflects or transmits from the sample.
Abstract:
An intracavity laser absorption infrared spectroscopy system for detecting trace analytes in vapor samples. The system uses a spectrometer in communications with control electronics, wherein the control electronics contain an analyte database that contains absorption profiles for each analyte the system is used to detect. The system can not only detect the presence of specific analytes, but identify them as well. The spectrometer uses a hollow cavity waveguide that creates a continuous loop inside of the device, thus creating a large path length and eliminating the need to mechanically adjust the path length to achieve a high Q-factor. In a preferred embodiment, the laser source may serve as the detector, thus eliminating the need for a separate detector.
Abstract:
An intracavity laser absorption infrared spectroscopy system for detecting trace analytes in vapor samples. The system uses a spectrometer in communications with control electronics, wherein the control electronics contain an analyte database that contains absorption profiles for each analyte the system is used to detect. The system can not only detect the presence of specific analytes, but identify them as well. The spectrometer uses a hollow cavity waveguide that creates a continuous loop inside of the device, thus creating a large path length and eliminating the need to mechanically adjust the path length to achieve a high Q-factor. In a preferred embodiment, the laser source may serve as the detector, thus eliminating the need for a separate detector.
Abstract:
The invention relates to a crystal fiber, a Raman spectrometer using the same and a inspection method thereof. The crystal fiber comprises a sapphire crystal is doped with two transition metals having different concentrations. An excitation light beam at a specific wavelength can propagate along the crystal fiber to generate a narrow-band light beam and a wide-band light beam to project on a specimen. Raman scattered light is emitted from the specimen. The wavelength of the Raman scattered light falls within the wavelength range of the wide-band light beam so that the wide-band light beam is enhanced at some characteristic wavelengths to facilitate Raman spectroscopy.
Abstract:
An optical system for use in an imaging procedure includes one or more semiconductor diodes configured to generate an input signal beam with a wavelength shorter than 2.5 microns that is amplified and communicated through optical fiber(s) to a nonlinear element configured to broaden the spectral width to at least 50 nm through a nonlinear effect. A subsystem includes lenses or mirrors to deliver an output beam having a broadened spectrum to an Optical Coherence Tomography apparatus with a sample and reference arm to perform imaging for characterizing the sample. The delivered output beam has a temporal duration greater than about 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity of less than approximately 50 MW/cm2. The output beam has a time averaged output power of 20 mW or more.
Abstract translation:用于成像过程的光学系统包括一个或多个半导体二极管,被配置为产生波长短于2.5微米的输入信号光束,该输入信号光束被放大并通过光纤传送到被配置为扩大光谱宽度的非线性元件 通过非线性效应至少50nm。 子系统包括透镜或反射镜,以将具有加宽光谱的输出光束传送到具有样品和参考臂的光学相干断层摄影装置,以执行用于表征样品的成像。 所输出的输出光束具有大于约30皮秒的时间持续时间,连续波和兆赫兹或更高之间的重复频率以及小于约50MW / cm 2的时间平均强度。 输出光束的时间平均输出功率为20mW以上。
Abstract:
An optical system for use in a spectroscopy procedure includes one or more semiconductor diodes configured to generate an input signal beam with a wavelength shorter than 2.5 microns that is amplified and communicated through optical fiber(s) to a nonlinear element configured to broaden the spectral width to at least 50 nm through a nonlinear effect. A subsystem includes lenses or mirrors to deliver an output beam having a broadened spectrum selected to obtain a desired penetration depth and substantially minimize water absorption with a temporal duration greater than about 30 picoseconds to a sample to perform spectroscopy to characterize the sample. The output beam may have a repetition rate between continuous wave and one Megahertz or higher with a time averaged output power of 20 mW or more and a time averaged intensity of less than approximately 50 MW/cm2.
Abstract translation:用于光谱法的光学系统包括一个或多个半导体二极管,其被配置为产生波长短于2.5微米的输入信号光束,该输入信号光束被放大并通过光纤传送到被配置为扩大光谱宽度的非线性元件 通过非线性效应至少50nm。 子系统包括透镜或反射镜,以输送具有被选择为扩展的光谱的输出光束,以获得期望的穿透深度并且基本上最小化对样品的时间持续时间大于约30皮秒的吸水率以进行光谱以表征样品。 输出光束可以具有连续波和一兆赫兹或更高的重复率,时间平均输出功率为20mW或更大,而时间平均强度小于约50MW / cm 2。