Abstract:
A method and apparatus for automatically selecting test types for an analytical meter system based on the insertion into the meter of a test element. The test element can be an analytical element, formed by a test strip with a fluid such as blood applied thereto; a control element, formed by a test strip with control fluid applied thereto; or a standard element, or a standard strip exhibiting known optical properties. By inserting the test element into the analytical meter system, optical properties are measured and the existence of relationships between the measurements are ascertained. Based on the existence or nonexistence of certain relationships, the proper test can be automatically selected by the meter without the need for user interaction. Advantageously, the results of the test can be classified and stored according to test type.
Abstract:
A method and apparatus for automatically selecting test types for an analytical meter system based on the insertion into the meter of a test element. The test element can be an analytical element, formed by a test strip with a fluid such as blood applied thereto; a control element, formed by a test strip with control fluid applied thereto; or a standard element, or a standard strip exhibiting known optical properties. By inserting the test element into the analytical meter system, optical properties are measured and the existence of relationships between the measurements are ascertained. Based on the existence or nonexistence of certain relationships, the proper test can be automatically selected by the meter without the need for user interaction. Advantageously, the results of the test can be classified and stored according to test type.
Abstract:
In a exhaust smoke sensor a light emitter generates a light beam which passes through a region containing the exhaust gas to a first light sensor. To reduce interference the light emitter is driven by a near square wave signal produced by passing a square wave through a low pass filter.
Abstract:
In the present invention, a fluorescent substance detection system (S) for detecting fluorescent substances in any environment is provided. Said detection system (S) comprises at least one illumination unit (1) which emits light to said environment in order to excite said substances; detection units (2), at least at a number equal to the number of types of fluorescent substances, for detecting emissions coming from said excited fluorescent substances and bandpass filters (3), each connected to detection units (2) one by one, wherein bandpass filters (3) have a center wavelength matched to the center emission wavelength of corresponding fluorescent substance.
Abstract:
L'invention concerne un procédé de commande d'un spectromètre d'analyse d'un produit, le spectromètre comprenant une source de lumière (LS) comportant plusieurs diodes électroluminescentes (LD1-LD4) ayant des spectres d'émission respectifs couvrant en combinaison une bande de longueurs d'onde d'analyse, le procédé comprenant des étapes consistant à: fournir un courant d'alimentation (I1-I4) à au moins une des diodes électroluminescentes pour l'allumer, mesurer une intensité lumineuse (LFL1- LFL4) émise par la source de lumière en mesurant un courant à une borne d'au moins une autre des diodes électroluminescentes maintenue éteinte, déterminer en fonction de chaque mesure d'intensité lumineuse, une valeur de consigne (LC1-LC4) du courant d'alimentation de chaque diode allumée, et réguler le courant d'alimentation de chaque diode allumée pour qu'il corresponde à la valeur de consigne.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Bestimmung der Elementbelegung auf einer Oberfläche (G) mit einer wenigstens eine UV-Leuchtdiode (1a) umfassende UV-Strahlquelle (1), deren UV-Strahlung das Element zur Fluoreszenz anregt, und mit einer Detektoreinheit (2) zur Detektion der Fluoreszenzstrahlung. Erfindungsgemäß ist die Vorrichtung dadurch gekennzeichnet, dass die Strahlführung durch Ausrichtung der UV-Strahlquelle (1) und der Detektoreinheit (2) relativ zur Oberfläche (G) und/oder durch Einsatz eines wellenlängenselektiven Strahlteilers (6) im Strahlengang derart gestaltet ist, dass die von der Oberfläche (G) rückreflektierte UV-Strahlung von der Detektoreinheit (2) ferngehalten wird.
Abstract:
The invention proposes an apparatus (110) for determining at least one optical property of a sample (112). The apparatus (110) comprises a tunable excitation light source (114; 410) for applying excitation light (122) to the sample (112). The apparatus (110) also comprises a detector (128, 130; 312) for detecting detection light (132, 136; 314) coming from the sample (112). The excitation light source (114; 410) comprises a light-emitting diode array (114) which is at least partially in the form of a monolithic light-emitting diode array (114). The monolithic light-emitting diode array (114) comprises at least three light-emitting diodes (426) each with a different emission spectrum.
Abstract:
REFIERIDO A UN DISPOSITIVO PARA DETERMINAR POR LO MENOS UNA PROPIEDAD OPTICA DE UNA MUESTRA, EN EL QUE EL DISPOSITIVO COMPRENDE: A) UNA FUENTE DE LUZ DE EXCITACION SINTONIZABLE PARA APLICAR LA LUZ DE EXCITACION A LA MUESTRA, EN DONDE DICHA FUENTE DE LUZ COMPRENDE UN CONJUNTO ORDENADO DE DIODOS EMISORES DE LUZ, EN EL QUE EL CONJUNTO ORDENADO DE DIODOS EMISORES DE LUZ ESTA CONFIGURADO, POR LO MENOS PARCIALMENTE, COMO UN CONJUNTO ORDENADO MONOLITICO DE DIODOS EMISORES DE LUZ, EL CUAL COMPRENDE A SU VEZ, POR LO MENOS TRES DIODOS EMISORES DE LUZ, CADA UNO DE LOS CUALES TIENE ESPECTROS DE EMISIONES DIFERENTES; Y B) UN DETECTOR PARA DETECTAR LA LUZ DE DETECCION QUE EMERGE DE LA MUESTRA
Abstract:
Disclosed is a method for measuring the absorbance of light of a substance in a solution in a measuring cell (23; 223′), said method comprising the steps of: transmitting (S1) a first light beam (27; 27′) from a light source (25; 25′) towards a beam splitter (29; 29′); dividing (S3) the first light beam (27; 27′) into a signal light ray (31; 31′) and a reference light ray (33; 33′) by the beam splitter (29; 29′); modulating (S5) the signal light ray (31; 31′); modulating the reference light ray (33; 33′); providing (S9) the measuring cell (23; 23′) such that the signal light ray (31; 31′) passes through the measuring cell; detecting (S11) a signal in a detector (39; 39′), which signal is the combined signal intensity of the signal light ray (31; 31′) and the reference light ray (33; 33′) detected by the detector (39; 39′); performing synchronous detection (S15) of the detected signal in order to reconstruct the intensities of the signal light ray (31; 31′) and the reference light ray (33; 33′) from the combined signal detected by the detector (39; 39′), said synchronous detection being based on the modulation performed to the signal light ray and the reference light ray. Disclosed also is a measuring device for carrying out said method.
Abstract:
In the present invention, a fluorescent substance detection system (S) for detecting fluorescent substances in any environment is provided. Said detection system (S) comprises at least one illumination unit (1) which emits light to said environment in order to excite said substances; detection units (2), at least at a number equal to the number of types of fluorescent substances, for detecting emissions coming from said excited fluorescent substances and bandpass filters (3), each connected to detection units (2) one by one, wherein bandpass filters (3) have a center wavelength matched to the center emission wavelength of corresponding fluorescent substance.