Abstract:
An illumination head (1) for machine vision has an annular support (2) with first, second, third, and fourth illumination sections (3, 4, 5, and 6). The third section (5) has three sets of LEDs (12, 13, 14) arranged in a pattern so that each set illuminates at approximately the same angle. Each set is driven in succession so that a series of three monochrome images at the same angle are captured. These are superimposed by an image processor to provide a color image, although the camera is monochrome. More information can be obtained in such a color image and the high resolution and robustness of monochrome cameras is availed of.
Abstract:
In a machine-vision system for inspecting a part, a method and apparatus to provide high-speed changing and/or automatic adjustment of illumination angle, dispersion, intensity, and/or color of illumination. One such system includes a light source emitting polarized light, a machine-vision imager that obtains an image, a processor coupled to receive the image, and operative to generate a quality parameter based on the image, and one or more of the various means as described above for selectively directing the light in a predetermined pattern based on its polarization and based on the quality parameter of the image. Another machine-vision system includes a machine-vision imager located along an optical axis, a controllable light source, a first optical element that selectively directs light in a first predetermined pattern relative to the optical axis based on light characteristics, a second optical element, that directs light in a second predetermined pattern relative to the optical axis, and an electronic controller operatively coupled to the imager and the controllable light source to control the light characteristics and thereby selecting one or more of the first and second predetermined patterns. A machine-vision method includes (a) setting one or more illumination parameters, (b) illuminating the object based on the one or more illumination parameters, (c) obtaining an image of the illuminated object, (d) generating a quality parameter based on an image quality of a predetermined region of interest in the image, and (e) iterating (b), (c), and (d) using a different illumination parameter.
Abstract:
A machine for inspecting a container which is being conveyed along a linear path. The machine has spaced left hand and right hand cabinets in front of the linear path with the space therebetween being space in which an operator can stand to be proximate to the linear path. The machine has left hand and right hand inspection stations which include a left-hand assembly located in front of the linear path and a right hand assembly located in front of the linear path. These assemblies are pivotally mounted about vertical axes so that they can be pivoted from a closed position proximate the liner path to a retracted position away from the linear path. At the retracted position an operator can enter the machine and service the inspection stations.
Abstract:
A light emitting diode lighting apparatus that includes: a power supply for providing a fixed direct current; a light emitting diode head for emitting light; and a controller for adjusting the level of said light output on said head and compensating for efficiency altering effects of said light in said power head, whereby said controller receives signals for optical feedback stabilization, temperature compensation, and detection of short term current changes to adjust said light and efficiency.
Abstract:
The matrix biochip sensing system of this invention uses a low-cost LED (light emit diode) matrix as the light source for the sensing system. The matrix biochip sensing system comprises an LED matrix light source, a biochip clamping member, an optical information filter module, an optical lens array, an optical sensor and a signal processing and control module. The light spots of the LED matrix is turned on in sequence, such that the fluorescent spots of the biochip that are respectively corresponding to the light spots of the laser diodes matrix may be actuated in the same sequence. Fluorescent spots so actuated are focused to a single optical sensor through an optical lens. At each sensing cycle of the optical sensor, only one fluorescent spot may be actuated. The output of the optical sensor in combination of the time axis may be processed by the signal processing and control module to obtain the genetic signals of the biochip.
Abstract:
The invention relates to a device (100) and a corresponding method for thermoacoustic sensing, in particular thermoacoustic imaging, the device (100) comprising: a) an irradiation unit (10) configured to generate electromagnetic and/or particle energy exhibiting a first modulation, the first modulation comprising at least one frequency and to continuously emit the energy towards a target (1), whereby acoustic waves are continuously generated in the target, the acoustic waves exhibiting a second modulation, the second modulation comprising the at least one frequency and/or a harmonic frequency of the at least one frequency; b) a detection unit (20) configured to simultaneously detect the acoustic waves exhibiting the second modulation while the energy exhibiting the first modulation is being continuously emitted towards the target (1); and c) a processing unit (30) configured to determine at least one thermoacoustic value of an amplitude and/or a phase of the second modulation of the acoustic waves at the at least one frequency and/or at a harmonic frequency of the at least one frequency. The invention allows for fast and economic thermoacoustic sensing, in particular imaging, of a region of interest of an object.
Abstract:
An apparatus and method are disclosed for examining optically a sample carried in a plurality of wells. A holder is adapted to receive and hold in place a sample carrier. A plurality of excitation means selectively introduce excitation towards a spatially limited portion of a sample carrier held in place by said holder. Detecting means receive and detect emission radiation coupled out from a light output window of a sample carrier held in place by said holder. Said detecting means is common to said excitation means and is configured to receive emission radiation from a plurality of different spatially limited portions of a sample carrier held in place by said holder.
Abstract:
An apparatus and method are provided for creating an image of a microarray. The apparatus includes at least one light source configured to direct light toward the microarray. The apparatus includes an excitation filter configured to filter the light into a first frequency band towards dichromatic mirror. The dichromatic mirror reflects light onto the microarray causing the microarray to emit electromagnetic energy. The apparatus includes emission filter configured to filter the electromagnetic energy within a second frequency band. The apparatus further includes an imaging unit having a charged coupled device (CCD), the CC having an Imaging surface masked by a pinhole blind such that when the pinhole blind receives electromagnetic energy from the emission filter, an image is created of the entire microarray.
Abstract:
A system and method for inspecting a workpiece (18), in particular a laminated composite workpiece (18) are provided. According to one embodiment, the system includes a plurality of illumination sources (14a, 14b, 14c) positioned proximate to the workpiece (18) and each operable to generate at least one respective illumination beam to illuminate at least a portion of the workpiece (18), wherein each beam has a different respective color. The system also includes at least one camera (12) positioned proximate to the workpiece (18) and operable to capture at least one image of at least a portion of the workpiece (18) including the illumination beams incident thereon. In addition, the system includes a data system (16) capable of providing simultaneous two- dimensional and three-dimensional information indicative of the workpiece (18) based on the image acquired by the camera (12).
Abstract:
An apparatus for optical inspection of containers (12) includes a light source (14) having at least one light emitting diode (16) with a light emitting die surface (18). Lenses and/or mirrors (20, 43) focus the light emitting die surface onto a selected portion of a container, and a light sensor (24) receives an image of the selected portion of the container illuminated by the light source. An information processor (28) is coupled to the light sensor for detecting commercial variations in the illuminated portion of the container as a function of the image received at the sensor. The image can be developed by transmission of the light energy through the selected portion of the container, and/or by reflection and/or refraction of the light energy at the selected portion of the container. The light source may include a single light emitting diode, or a plurality of light emitting diodes having light emitting die surfaces focused onto the container in such a way that the images of the light emitting die surfaces overlap and/or are adjacent to each other at the container.