Abstract:
An apparatus and method are provided for creating an image of a microarray. The apparatus includes at least one light source configured to direct light toward the microarray. The apparatus includes an excitation filter configured to filter the light into a first frequency band towards dichromatic mirror. The dichromatic mirror reflects light onto the microarray causing the microarray to emit electromagnetic energy. The apparatus includes emission filter configured to filter the electromagnetic energy within a second frequency band. The apparatus further includes an imaging unit having a charged coupled device (CCD), the CC having an Imaging surface masked by a pinhole blind such that when the pinhole blind receives electromagnetic energy from the emission filter, an image is created of the entire microarray.
Abstract:
The present invention relates to pathogen detection and identification by use of DNA resequencing microarrays. The present invention also provides resequencing microarray chips for differential diagnosis and serotyping of pathogens present in a biological sample. The present invention further provides methods of detecting the presence and identity of pathogens present in a biological sample. The present invention also provides a computer-implemented biological sequence identifier (CIBSI) system and method for selecting a subsequence from biological sequence data according to at least one selection parameter. The at least one selection parameter corresponds to a likelihood of returning a meaningful result from a similarity search.
Abstract:
This disclosure describes combinations of apparatus and methods to comprise a system for broad use and effective application of analytical genomic microarrays for screening and surveillance. The methodology abandons reliance on typical volumes of peripheral blood samples obtained by phlebotomy, in preference for protocols enabling collection, stabilization, archive, extraction and purification of small volumes as obtained from a finger prick. Recommended processing protocols from such starting material favor preparation of sufficient quantities of RNA or DNA of sufficient quality for subsequent steps of targeted amplification and fluorescent labeling. A strategy is offered for effective integration of capabilities for genotype and phenotype analysis on the same microarray layout. These gene expression re-sequencing arrays (GXR) are well suited for screening and surveillance applications.
Abstract:
The present invention relates to pathogen detection and identification by use of DNA resequencing microarrays. The present invention also provides resequencing microarray chips for differential diagnosis and serotyping of pathogens present in a biological sample. The present invention further provides methods of detecting the presence and identity of pathogens present in a biological sample. The present invention also provides a computer-implemented biological sequence identifier (CIBSI) system and method for selecting a subsequence from biological sequence data according to at least one selection parameter. The at least one selection parameter corresponds to a likelihood of returning a meaningful result from a similarity search.