Abstract:
A method and apparatus relating to a controller for controlling a light emitting array (22) by setting a power level provided to each individual light emission source within the light emitting array is provided. The controller includes a processor for executing instructions and a memory device for storing data. The data from the memory device provides individual instruction for a power level required for each individual light emission source to achieve a normalized detection of light within the fluorometer (44). A method of manufacturing a controller (38) for controlling the emission of light in a fluorometer includes analyzing the well values of illumination and storing power level values in a memory device corresponding to predetermined illumination levels of the illumination sources.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
A method and a machine for balancing vehicle wheels with weights (18), the method comprising stages of: using a video camera (5, 6, 206) to frame a portion of a surface of a hub (101) of a wheel on which a weight (18) is to be applied, locating, in images of the hub (101) taken by the camera (5, 6, 206), at least a balancing plane (E1 , E2) which is perpendicular to a rotation axis (A) of the wheel, piloting at least a pick-up device (8, 9, 209) such as to direct the at least a pick-up device (8, 9, 209) onto a point (P1 , P2) of the hub (101) belonging to the balancing plane (E1 , E2), detecting, by means of the pick-up device (8, 9, 209) characteristic geometric parameters of the hub (101) at the balancing plane (E1 , E2), measuring an imbalance of the wheel, calculating, by means of an electronic calculator (4, 204) an entity of at least a weight (18) to be applied to the hub (101) at the balancing plane (E1 , E2), and also calculating an angular position (T1 , T2) of the weight (18) in the balancing plane (E1 , E2).
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monoxide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
A method and a machine for balancing vehicle wheels with weights (18), the method comprising stages of: using a video camera (5, 6, 206) to frame a portion of a surface of a hub (101) of a wheel on which a weight (18) is to be applied, locating, in images of the hub (101) taken by the camera (5, 6, 206), at least a balancing plane (E1, E2) which is perpendicular to a rotation axis (A) of the wheel, piloting at least a pick-up device (8, 9, 209) such as to direct the at least a pick-up device (8, 9, 209) onto a point (P1, P2) of the hub (101) belonging to the balancing plane (E1, E2), detecting, by means of the pick-up device (8, 9, 209) characteristic geometric parameters of the hub (101) at the balancing plane (E1, E2), measuring an imbalance of the wheel, calculating, by means of an electronic calculator (4, 204) an entity of at least a weight (18) to be applied to the hub (101) at the balancing plane (E1, E2), and also calculating an angular position (T1, T2) of the weight (18) in the balancing plane (E1, E2).
Abstract:
A precision machine vision inspection system and method for increased inspection throughput. The vision inspection system includes a movable stage for scanning and measuring selected workpiece features. In prior systems, conventional interspersing of image processing and inspection operations with image acquisition operations required stopping and starting the stage motion during image acquisition, necessitating associated delays or wait-states in various operations. Such delays are avoided in this invention by acquiring images continuously, with a timing that is independent of image inspection operations, so that delays and wait-states are avoided. In addition, continuous stage motion is combined with a strobe lighting feature during the image acquisition operations to acquire blur-free images at a high rate. Improved image acquisition and image analysis routines including these features are created and stored by the system.
Abstract:
A portable device for the quality control of vegetal products comprising a power supply (7) intended for powering a circular crown of lighting lamps (41) at the centre of which there is arranged the receiving objective of a spectrometer (45) provided with means (431) adapted for resting on the product to be checked, said spectrometer (45) being associated to a microprocessor (11) which provides the measurement data on display means (12); according to the invention, the lamps (41) are permanently powered, and in stand-by, at a reduced voltage (70), lower than the nominal voltage (71) delivered by the power supply (7), and instantaneously at the nominal voltage (71 supplied by the power supply (7) through a power circuit (8) whose activation is commanded and controlled by the microprocessor (11) in response to an activation signal generated by a button (10).
Abstract:
A spectral reflectance sensor including: a light source for emitting a modulated beam of red light; a light source for emitting a modulated beam of near infrared light; a receiver for receiving reflected light produced by either the red source or the near infrared source; a receiver for receiving incident light from either the red source or the infrared source; a signal conditioner responsive to the modulation such that the signals produced by the receivers in response to reflected and incident light from the source can be discriminated from signals produced by ambient light; and a microprocessor having an input such that the microprocessor can determine the intensities of incident red light, reflected red light; incident near infrared light; and reflected near infrared light. From these intensities, and by knowing the growing days since emergence or planting, the sensor can calculate the mid-growing season nitrogen fertilizer requirements of a plant.