Abstract:
The present disclosure includes apparatuses and methods related to a memory device as the store to program instructions. An example apparatus comprises a memory device having an array of memory cells and sensing circuitry coupled to the array. The sensing circuitry includes a sense amplifier and a compute component configured to implement logical operations. A memory controller, coupled to the array and the sensing circuitry is configured to receive a block of instructions including a plurality of program instructions. The memory controller is configured to store the block of instructions in the array and retrieve program instructions to perform logical operations on the compute component.
Abstract:
Time-constrained data copying between storage media is disclosed. When an electronic device is engaged in real-time operations, multiple data blocks may need to be copied from one storage medium to another storage medium within certain time constraints. In this regard, a data port is operatively controlled by a plurality of registers of a first register bank. The plurality of registers is copied from the first register bank to a second register bank within a temporal limit and while the data port remains under control of the plurality of registers being copied. By copying the plurality of registers within the temporal limit, it is possible to prevent operational interruption in the data port and reduce bandwidth overhead associated with the register copying operation.
Abstract:
A shiftable memory supporting atomic operation employs built-in shifting capability to shift a contiguous subset of data from a first location to a second location within memory during an atomic operation. The shiftable memory includes the memory to store data. The memory has the built-in shifting capability. The shiftable memory further includes an atomic primitive defined on the memory to operate on the contiguous subset.
Abstract:
Apparatus and methods of operating memory devices are disclosed. In one such method, a first portion of the data states of memory cells are determined and transferred from a memory device while continuing to determine remaining portions of data states of the same memory cells. In at least one method, a data state of a memory cell is determined during a first sense phase and is transferred while the memory cell experiences additional sense phases to determine additional portions of the data state of the memory cell.
Abstract:
The present invention presents a non-volatile memory wherein bad columns in the array of memory cells can be removed. According to another aspect of the present invention, substitute redundant columns can replace the removed columns. Both of these processes are performed on the memory in a manner that is externally transparent and, consequently, need not be managed externally by the host or controller to which the memory is attached. An inventory of the bad columns can be maintained on the memory. At power up, the list of bad columns is used to fuse out the bad columns. The memory may also contain a number of redundant columns that can be used to replace the bad columns.
Abstract:
A non-volatile memory device capable of reading and writing a large number of memory cells in parallel has an architecture that reduces redundancy in the multiple read/write circuits to a minimum. In one aspect, data latches associated with the multiple read/write circuits are I/O enabled and coupled in a compact manner for storage and serial transfer. They are implemented by one or more chain of link modules, which can selectively behave as inverters or latches. A method enables the use of a minimum number of link modules by cycling data between a set of master link modules and a substantially smaller set of slave link modules.
Abstract:
An ink jet print head identification system for providing print head identifying information to the electronics of an ink jet printer includes one or more parallel load, serial out, dynamic shift registers integrated into a print head chip having a plurality of address lines interconnecting the printer electronics and the print head electronics. The memory input of each shift register is electrically connected to a memory matrix that supplies digital bits of information to the shift register in response to receiving a decode signal function from the printer electronics. In a preferred embodiment, two of the address lines provide each of the registers with successive sequential clock signals to serially shift the bit of information received from the shift register's corresponding memory matrix to an output line where the print head identifying information is read by the printer electronics. Embodiments of the invention may employ any number of shift registers and memory matrices independent of the number of available address lines.
Abstract:
A computer system and method for sequencing deoxyribonucleic acid (DNA), to determine the order of the different nucleotides in a genomic sequence or sequence fragment. An alignment system employs a direct "brute force" Hamming distance calculation between a read sequence and a reference genome. The alignment system is configured to compare directly a set of DNA fragments to a reference genome in a short period, and with the higher probability of accuracy than similar comparison systems given the same number of clock cycles. Each DNA fragment is compared with a reference genome for the entire length of the latter using arrangements of memory cells for storing read sequences and inverse complements of the read sequences, shift registers for streaming the reference genome, and circuitry for calculating and summing the distance between the reference, the read sequence, and the inverse complement in parallel. Both digital and analog implementations are described.
Abstract:
Shiftable memory that supports defragmentation includes a memory having built- in shifting capability, and a memory defragmenter to shift a page of data representing a contiguous subset of data stored in the memory from a first location to a second location within the memory to be adjacent to another page of stored data. A method of memory defragmentation includes defining an array in memory cells of the shiftable memory and performing a memory defragmentation using the built-in shifting capability of the shiftable memory to shift a data page stored in the array.
Abstract:
Systems and methods are provided for managing access to registers. In one embodiment, a system may include a processor and a plurality of registers. The processor and the plurality of registers may be integrated into a single device, or may be in separate devices. The plurality of registers may include a first set of registers that are directly accessible by the processor, and a second set of registers that are not directly accessible by the processor. The second set of registers may, however, be accessed indirectly by the processor via the first set of registers. In one embodiment, the first set of registers may include a register for selecting a register bank from the second set of registers, and a register for selecting a particular address within the register bank, to allow indirect access by the processor to the registers of the second set.