Abstract:
A field emission cathode and methods for fabricating such a cathode from at least one body containing a first substance. The steps include a preparation of at least one irregularity in an emitting surface of the body, adding to the emitting surface of the body ions of a second substance with a low work function, and modifying the emitting surface by inducing field emission in applying a variable electric field to the body and increasing the field strength in steps.
Abstract:
Evacuation of the volume of a field emission display can be carried out more easily by attaching the auxiliary chamber of various shape to the main space of a field emission display, which enlarge the volume of the field emission display. Several types of auxiliary chambers are attached to the main space of a field emission display and the resultant structures are described. The main purpose of the present invention is to introduce the method of providing the space for placing getters and increasing the conductance of the system to evacuate by enlarging the total volume of the field emission display.
Abstract:
A flat display screen has a cathode including microtips for electronic bombardment associated with a gate, an anode including phosphor elements, and an inter-electrode gap. The screen includes an apertured insulating plate defining the inter-electrode gap associated with means for maintaining the plate apart from the anode.
Abstract:
A field emission cathode for use in flat panel displays is disclosed comprising a layer of conductive material and a layer of amorphic diamond film, functioning as a low effective work-function material, deposited over the conductive material to form emission sites. The emission sites each contain at least two sub-regions having differing electron affinities. Use of the cathode to form a computer screen is also disclosed along with the use of the cathode to form a fluorescent light source.
Abstract:
An anode plate 40, suitable for use in a field emission display tetrode, includes a transparent planar substrate 42 having thereon a layer 46 of a transparent, electrically conductive material, which comprises the anode electrode of the display tetrode. Barrier structures 48 comprising an electrically insulating, preferably opaque material, are formed on anode electrode 46 as a series of parallel ridges. Atop each barrier structure 48 are a series of electrically conductive stripes 50, which function as deflection electrodes. Luminescent material 52 overlies anode electrode 46 in the channels between barrier structures 48. Conductive stripes 50 are termed into three series such that every third stripe 50 is electrically interconnected. Deflection voltage controller 70 permits selective deflection of electrons toward the proper luminescent material 52. By applying a positive voltage on two of the three series of stripes 50, and applying a negative voltage on the third series of stripes 50, electrons are deflected between pairs of stripes 50 biased to the positive voltage. Deflection electrodes 50 may advantageously be formed of a conductive material having getting qualifies, such as zirconium-vanadium-iron. Also disclosed is a method for fabricating anode plate 40.
Abstract:
A field emission display having an ion pump, for removal of outgassed material, is described. The display has a baseplate and an opposing face plate. A substrate acts as a base for the baseplate. There are parallel, spaced conductors acting as cathode electrodes, over the substrate. An insulating layer covers the cathode electrodes and the substrate, and parallel, spaced conductors act as gate electrodes and overlay the insulating layer. There is a plurality of openings extending through the insulating layer and the gate electrodes. At each of the openings is a field emission microtip connected to and extending up from one of the cathode electrodes. The faceplate has a glass base and is mounted opposite and parallel to the baseplate. A conducting anode electrode covers the glass base. There is a pattern of phosphorescent material over the conducting anode electrode, so that when electrons which are emitted from the field emission microtips strike the pattern of phosphorescent material, light is emitted, as well as outgassed material. Ion pump cathode electrodes formed of a gettering material cover the gate electrodes, so that during display operation the outgassed material is collected at the ion pump cathode electrodes. Alternately, the ion pump cathode may be formed on a focusing electrode, on a focusing mesh, or on other electrode structures.
Abstract:
A cold cathode field emission display is described. A key feature of its design is that each individual microtip has its own ballast resistor. The latter is formed from a resistive layer that has been interposed between the cathode line and the substrate. When openings for the microtips are formed in the gate line, extending down as far as the resistive layer, an overetching step is introduced. This causes the dielectric layer to be substantially undercut immediately above the resistive layer thereby creating an annular resistor positioned between the gate line and the base of the microtip.
Abstract:
A field emitter array magnetic sensor (FEAMS) device, comprising: an anode; a base plate member having on a first side thereof a plurality of gated field emitter elements thereon, in spaced proximal relationship to the anode. The plurality of gated field emitter elements and the anode structure are arranged so that each of the gated field emitter elements is in electron emitting relationship to varying electron impingement sites depending on intensity of the magnetic field on the gated field emitter element. The device includes structure for sensing the locations of the anode structure electron impingement sites receiving electrons from the plurality of gated field emitter elements, and determining the strength and orientation of the magnetic field. Also disclosed are various anode configurations which may be usefully employed in the FEAMS device of the invention.