Abstract:
This invention is directed to an x-ray source comprising a housing (12), a power supply (12A), an elongated tubular probe (14), a target assembly (26), and a beam steering assembly (29). The housing encloses an electron beam source (22), and has elements for generating an electron beam along a beam path. The power supply (12A) is programmable to control the voltage, current and timing of an electron beam. The elongated tubular probe (14) extends along a central axis from the housing (12) about the beam path. The target assembly (26) extends along the central axis and is adapted for coupling to end of the probe (14) distal from the housing (12). The target assembly (26) includes target element (26A) positioned along the beam path, wherein the target element (26A) is adapted to emit x-rays in a predetermined spectral range in response to incident electrons. The beam steering assembly (29) includes a deflection element (30), a feedback network (31) and a deflection controller (144). The deflection element (30) deflects the beam from a nominal axis to a selected surface region on the target element (26) in response to a deflection control signal. The feedback network (31) includes deflection sensing elements for sensing the deflection of the beam and elements for generating a feedback signal representative thereof.
Abstract:
This invention is directed to an x-ray source comprising a housing (12), a power supply (12A), an elongated tubular probe (14), a target assembly (26), and a beam steering assembly (29). The housing encloses an electron beam source (22), and has elements for generating an electron beam along a beam path. The power supply (12A) is programmable to control the voltage, current and timing of assembly (26) extends along the central axis and is adapted for coupling to end of the probe (14) distal from the housing (12). The target assembly (26) includes target element (26A) positioned along the beam path, wherein the target element (26A) is adapted to emit x-rays in a predetermined spectral range in response to incident electrons. The beam steering assembly (29) includes a deflection element (30), a feedback network (31) and a deflection controller (144). The deflection element (30) deflects the beam from a nominal axis to a selected surface region on the target element (26) in response to a deflection control signal. The feedback network (31) includes deflection sensing elements for sensing the deflection of the beam and elements for generating feedback signal representative thereof.
Abstract:
This invention is directed to an x-ray source comprising a housing (12), a power supply (12A), an elongated tubular probe (14), a target assembly (26), and a beam steering assembly (29). The housing encloses an electron beam source (22), and has elements for generating an electron beam along a beam path. The power supply (12A) is programmable to control the voltage, current and timing of an electron beam. The elongated tubular probe (14) extends along a central axis from the housing (12) about the beam path. The target assembly (26) extends along the central axis and is adapted for coupling to end of the probe (14) distal from the housing (12). The target assembly (26) includes target element (26A) positioned along the beam path, wherein the target element (26A) is adapted to emit x-rays in a predetermined spectral range in response to incident electrons. The beam steering assembly (29) includes a deflection element (30), a feedback network (31) and a deflection controller (144). The deflection element (30) deflects the beam from a nominal axis to a selected surface region on the target element (26) in response to a deflection control signal. The feedback network (31) includes deflection sensing elements for sensing the deflection of the beam and elements for generating a feedback signal representative thereof.
Abstract:
The present invention is directed to an x-ray source (10) for irradiating a surface defining a body cavity. The source comprises a housing (12), an elongated tubular probe (14), a target assembly (26), and an inflatable balloon (410). The housing (12) encloses an electron beam source (22) and includes elements (23) for generating an electron beam along a beam path. The tubular probe (14) extends along a central axis from the housing (12) about the beam path. The target assembly (26) extends along the central axis and is coupled to the probe distal end. The target assembly (26) includes a target element (26A, 26B) adapted to emit x-rays in response to electrons incident thereon. The probe tip assembly and associated control electronics include elements for positioning the target element in the beam path, and is substantially x-ray transparent. The balloon (410) affixed to the distal end is inflatable so as to be inflated to stretch the cavity to a shape, thus allowing a uniform delivery of dose of radiation to the surface defining a body cavity.
Abstract:
L'invention concerne les lasertrons à faisceaux multiples. Les n (n : nombre entier supérieur à 1), faisceaux d'électrons (3) du lasertron sont obtenus à partir d'un même faisceau laser (2) dont, par occultation, sont extraits n faisceaux lasers secondaires qui sont déviés respectivement vers les n photocathodes (1) du lasertron.
Abstract:
PROBLEM TO BE SOLVED: To provide a photocathode capable of improving S/N ratio by restraining lowering of a spectral sensitivity when temperature is lowered. SOLUTION: A light-absorbing layer 12 is formed on a substrate 11, and an electron-emitting layer 13 is formed on the light-absorbing layer 12. A stripe-shaped contact layer 14 is formed on the electron-emitting layer 13, and a surface electrode 15 made of metal is formed on the frontal surface of the contact layer 14. A distance between protruded strings in the contact layer 14 is adjusted so that the distance L between a point farthest from the contact layer 14 on an exposed surface of the electron-emitting layer 13 and the contact layer 13 be 0.1 μm or more and 1 μm or less. COPYRIGHT: (C)2004,JPO
Abstract:
본 발명은 체강을 형성하는 면에 조사하기 위한 X-선소오스(10)에 관한 것이다. 이 소오스는 하우징(12), 기다란 관상 프로우브(14), 타킷트조립체(26)와 팽창형 기낭(410)으로 구성된다. 하우징(12)에는 전자빔소오스(22)가 내장되어 있으며 빔진로를 따라 전자빔을 발생하기 위한 요소(23)를 포함한다. 관상프로우브(14)는 빔진로의 둘레에서 하우징(12)으로부터 중심축선을 따라 연장된다. 타킷트조립체(26)는 이에 투사되는 전자에 응답하여 X-선을 방출하는 타킷트요소(26A), (26B)를 포함한다. 프로우브팁조립체와 이에 결합된 제어전자장치는 빔진로내에 타킷트요소를 배치시키기 위한 요소를 포함하고 X-선이 투과할 수 있게 되어 있다. 말단부에 고정된 기낭(410)은 체강을 확장시키도록 팽창되어 체강을 형성하는 면에 균일한 방사선의 조사가 이루어질 수 있도록 팽창가능하게 되어 있다.
Abstract:
본 발명은, 진공 또는 대기 등의 기체에서 인접한 두 개의 전극 사이에 전계를 인가하여 전자를 방출시키는 유도방출(field emission)법과 물질의 표면에 임계 에너지 이상의 광(photon)을 조사하여 전자를 방출시키는 광전효과(photoelectric effect)를 이용한 것으로서, 즉 두 개의 박막형의 전극을 형성하고 이 전극을 각각 방출전극(emission electrode), 수전전극(collector electrode)으로 사용하고 임계 에너지 이상의 광을 방출전극에 조사하여 전자를 방출시켜 게이트의 동작을 수행하도록 하는 광게이트 트랜지스터를 이용하여 고속의 동작회로를 구현할 수 있는 여러 개의 전기신호를 시간분할하여 한 개의 전송선으로 송신할 수 있는 멀티플렉서(multiplex)회로 및 전송된 1개의 전송선으로부터 시간분할된 신호를 다시 복구하는 디멀티플렉서(demultiplex) 회로를 구현하기 � ��한 광게이트 트랜지스터를 사용한 MUX 및 DEMUX 회로에 관한 것으로, 광게이트 트랜지스터의 초고속의 동작특성을 이용하여 여러 가지 고속회로의 응용이 가능하며, 고속의 광 MUX/DEMUX 회로를 구성할 경우 광신호를 전송하거나 전기 신호를 전송할 경우 모두 전기신호로 신호형태의 전환이 이루어질 수 있으며, 또한 상기 MUX/DEMUX 회로가 전원전압과 광원의 광세기로 충분히 구동할 수 있는 장점이 있어 간단하게 구동회로를 구성할 수 있다.