Abstract:
An engraving system and method is disclosed having multiple engraving heads wherein the operation of each head is controllable so that a vertical screen and/or horizontal screen may be independently controlled, thereby facilitating enabling each engraving head to engrave in accordance with different screen rulings as may be selected by a user. The engraving system includes a signal generator for controlling the vertical screen by utilizing a plurality of vertical scalers which use a cylinder factor signal corresponding to the rotational position of a cylinder rotatably mounted on the engraver, as well as screen variables, such as a screen angle and a screen ruling, to generate independent vertical scaled or screen signals. These vertical scaled signals are used to independently energize the engraving heads to engrave patterns defining different vertical resolutions or vertical screens. This system and method also discloses a drive system for independently driving the engraving heads using the cylinder factor signal mentioned above and the screen variables which were input by the user to enable the engraving heads to engrave patterns having differing horizontal resolution or horizontal screens. Thus, the method and apparatus enable a user to simultaneously or independently change the vertical screen and horizontal screen and, consequently, the screen ruling for each pattern of engraved areas being engraved.
Abstract:
A beam steering apparatus (502) for use in a laser pattern generation apparatus, having a steering mirror (602) for deflecting the radiant energy beam to a first point in space, a second steering mirror (604) for deflecting the radiant energy beam to a second point in space, and a position detection means (605-608) comprising a first beam splitting means (605) for creating an alignment beam from said radiant energy beam, a second beam splitting means (606) for creating a first positional beam and a second positional beam from said alignment beam, a first sensor (608) to detect the position of said radiant energy beam at said first point in space from said first positional beam, and a second sensor (607) to detect the position of said radiant energy beam at a second point in space from said second positional beam.
Abstract:
A beam steering apparatus (502) for use in a laser pattern generation apparatus, having a steering mirror (602) for deflecting the radiant energy beam to a first point in space, a second steering mirror (604) for deflecting the radiant energy beam to a second point in space, and a position detection means (605-608) comprising a first beam splitting means (605) for creating an alignment beam from said radiant energy beam, a second beam splitting means (606) for creating a first positional beam and a second positional beam from said alignment beam, a first sensor (608) to detect the position of said radiant energy beam at said first point in space from said first positional beam, and a second sensor (607) to detect the position of said radiant energy beam at a second point in space from said second positional beam.
Abstract:
Precise positioning of image data on an imaging belt (30) in the electrostatographic printing process is accomplished using a positioning means. Lateral position of the imaging belt (30) is detected using a light source (40) and photodetector (44,72,130,208,226) determine an imaging belt edge position and tying the transfer of image data to that position. Circumferential position of the imaging belt is detected using one or more transparent windows which pass over the photodetector (44,72,130,208,226) which, in turn, is illuminated by the light source (40) when a window passes it. The signal from the detector is used to calculate a circumferential adjustment and either the light source or imaging belt motion is adjusted accordingly. Nonoptical embodiments using magnetic or capacitive detectors also can be used to detect the imaging belt circumferential position. A method for positioning image data on an imaging belt is also disclosed.
Abstract:
A longitudinally displacable roll apparatus supporting a web (16) of record material is designed to maintain the roll (18) in proper alignment with associated processing equipment as the web is paid from, or wound onto, the roll. The apparatus comprises a pair of frame members supporting the roll. The roll is rotated by a drive shaft (195) having an interengageable coupler on the drive shaft and one end of the roll, to permit the roll to be rotatably driven by the roll drive shaft while not being directly secured thereto. The other end of the roll is engaged by means for displacing it longitudinally in accordance with signals derived from the actual path of the web so as to keep the web accurately on its intended path. The longitudinal and rotational drive system are able to operate independently of each other.
Abstract:
A picture information input apparatus has a leading and trailing end detecting circuit for detecting the leading and trailing ends of a document to produce read out signals of "1" and "0". The leading and trailing end detecting circuit starts a first count by a document presence detecting signal of "0" from a detecting unit which detects the transfer of the document. When a hole of the document is smaller than an allowable hole diameter, it clears the counting. Only when the hole is larger than the allowable hole diameter, it starts a second count. After the second count ends, it produces a read out signal of "0" indicating that the trailing edge of the document is detected. A picture bus control circuit receives the read out signal of "1" to transmit a picture data signal to a picture transceiver, and receives the read out signal of "0" to stop the transmission of the picture data signal.
Abstract:
An optical encoder includes a light emitting unit that emits parallel light onto a plurality of marks that are arranged on an object such as a rotor or a belt, at a predetermined interval in a moving direction of the object, and a light receiving unit that receives light modulated by the marks. The parallel light is generated by a collimating lens.
Abstract:
A scanning device includes a scanning mechanism, a memory, a processing mechanism, and a scan rate adjustment mechanism. The scanning mechanism scans a media sheet having an image thereon at a variable scan rate, to yield raw data. The memory temporarily stores the raw data. The processing mechanism converts the raw data within the memory into processed data. The raw data is removed from the memory as the raw data is converted. The scan rate adjustment mechanism adjusts the variable scan rate, based on one or more of an amount of free space within the memory, a fill rate at which the raw data is filling the memory, and a removal rate at which the raw data is being removed from the memory, so that the memory does not become completely full.
Abstract:
An optical scanning unit used in an image forming apparatus having a latent image carrier includes a light emitter, a rotary deflector, an inclination adjustment unit, and a controller. The light emitter emits a light beam. The rotary deflector deflects and scans the light beam onto a surface of the latent image carrier. The inclination adjustment unit adjusts an inclination of a scan line corresponding to the light beam relative to a reference scan line on the latent image carrier. The controller changes at least one of a linear velocity of the latent image carrier and a rotation speed of the rotary deflector so as to change a ratio between the linear velocity of the latent image carrier and a scan speed of the light beam, and controls the inclination adjustment unit based on the ratio to keep the scan line from inclining relative to the reference scan line.
Abstract:
An image size compensating system of a multifunction printer includes a scanning unit to generate scan data obtained by scanning a reference document and a copy of the reference document, a system control unit to extract scan information on widths and lengths of the reference document and the copy from the scan data, and a printer engine to receive the scan information from the system control unit and to control a main motor controlling a length of a print image and a polygon motor controlling a width of the print image so that sizes of the reference document and the copy are identical to each other.