Abstract:
A Composition comprising one or more metal hydroxy salts and a matrix, binder or carrier material, wherein the metal hydroxy salt is a compound comprising (a) as metal either (i) one or more divalent metals, at least one of them being selected from the group consisting of Ni, Co, Ca, Zn, Mg, Fe, and Mn, or (ii) one or more trivalent metal(s), (b) framework hydroxide, and (c) a replaceable anion. This composition has various catalytic applications.
Abstract:
The present invention pertains to a process for hydroprocessing a heavy hydrocarbon oil, comprising contacting a heavy hydrocarbon oil in the presence of hydrogen with a mixture of hydroprocessing catalyst I and hydroprocessing catalyst II wherein catalyst I has a specific surface area of at least 100 m2/g, a total pore volume of at least 0.55 ml/g, at least 50% of the total pore volume in pores with a diameter of at least 20 nm (200 Å) and at least 65% of the total pore volume in pores with a diameter of 10-120 nm (100-1200 Å), and catalyst II has a specific surface area of at least 100 m2/g, a total pore volume of at least 0.55 ml/g, 30-80% of the pore volume in pores with a diameter of 10-20 nm (100-200 Å), and at least 5% of the pore volume in pores with a diameter of at least 100 nm (1000 Å) with catalyst I having a larger percentage of its pore volume in pores with a diameter of at least 20 nm (200 Å) than catalyst II. The process of the invention combines high contaminant removal with high conversion, low sediment formation, and high process flexibility.
Abstract:
Fischer-Tropsch process for the conversion of carbon monoxide and hydrogen to C5+ hydrocarbon mixtures in which process use is made of Fischer-Tropsch catalyst particles and fluid catalytic cracking (FCC) catalyst particles. The FCC catalyst can be a fresh FCC catalyst, or an equilibrium catalysts (E-cat).
Abstract:
Continuous process for the hydrothermal conversion of a solid starting iron compound selected from the group of iron oxides, iron hydroxides, iron oxyhydroxides, and mixtures thereof into a solid product iron compound with different physical, chemical, and/or structural properties. The process comprises the steps of a) dispersing the solid starting iron compound in a liquid thus forming a suspension, and b) feeding the suspension continuously though one or more agitated conversion vessel(s), in which vessel(s) the solid starting iron compound is converted into the solid product iron compound under hydrothermalconditions.
Abstract:
Process for the preparation of doped pentasil-type zeolite, which process comprises the steps of: a) preparing an aqueous precursor mixture comprising a silicon source, an aluminium source, doped faujasite seeds, and another type of seeding material, and b) thermally treating the precursor mixture to form a doped pentasil-type zeolite. This process results in doped pentasil-type zeolites in a shorter crystallisation time compared to prior art processes.
Abstract:
Catalyst composition comprising 5-55 wt% metal-doped anionic clay, 10-50 wt% zeolite, 5-40 wt% matrix alumina, 0-10 wt% silica, 0-10 wt% of other ingredients, and balance kaolin. In metal-doped anionic clays, the additive, i.e. the metal dopant, is distributed more homogeneously within the anionic clay than in impregnated anionic clays, without separate phases of additive being present. Hence, abrasion of this catalyst composition will result in microfines poorer in additive than the prior art composition. Furthermore, the catalyst composition according to the invention results in a higher reduction of sulfur in fuels such as gasoline and diesel than is the case in compositions comprising impregnated anionic clay.
Abstract:
The present invention pertains to a process for testing FCC catalysts on a small scale wherein: a) the feed to be cracked is heated to a temperature between 50 and 500° C., b) the heated feed is injected into a riser reactor containing the FCC catalyst to be tested having a temperature between 500 and 800° C., the injection time being less than 2 seconds, c) the feed is contacted with the FCC catalyst under fluidized conditions for a contact time of less than 8 seconds, and d) the feed is stripped from the FCC catalyst and the properties of the product are analyzed. The invention also comprises the apparatus employed to carry out the process. With the process of the invention the mass transfer and diffusion limitations of commercial FCC units are properly simulated.
Abstract:
The invention relates to a bulk catalyst composition comprising metal oxidic particles comprising one or more Group VIII metals and two or more Group VIB metals, which bulk catalyst composition comprises first metal oxidic particles comprising one or more first Group VIII metals and one or more first Group VIB metals separately prepared second metal oxidic particles comprising one or more second Group VIII metals and one or more second Group VIB metals, wherein the composition of Group VIB and Group VIII metals in the first and second metal oxidic particles are different, wherein the first and second oxidic bulk particles are separately shaped to separate first and second shaped bulk catalyst particles, which are combined, preferably into a homogenous blend to form the bulk catalyst composition. The invention further relates to a process for the preparation of the bulk catalyst composition and to hydroprocessing a hydrocarbon feed using the bulk catalyst composition.