Abstract:
Embodiments disclosed herein include flame positioning and stabilization devices, systems, and methods as well as burners and combustion systems (e.g., systems that include multiple burners), which incorporate such flame positioning and stabilization devices, systems, and methods.
Abstract:
Embodiments disclosed herein include flame positioning and stabilization devices, systems, and methods as well as burners and combustion systems ( e.g ., systems that include multiple burners), which incorporate such flame positioning and stabilization devices, systems, and methods.
Abstract:
Technologies are provided for employing electricity to control a combustion reaction. Energy is received from a combustion reaction. A portion of the received energy is converted to generated electricity. The generated electricity converted from the combustion energy is used to control the combustion reaction.
Abstract:
A swirl-stabilized burner includes a charge source configured to apply a majority charge to a combustion reaction and at least one stabilization electrode configured to apply electrical attraction or repulsion to the majority charge to control position or stability of the swirl-stabilized combustion reaction.
Abstract:
A burner system includes a fuel nozzle, an electrode configured to apply electrical energy to a combustion reaction supported by the fuel nozzle, a high-voltage converter configured to receive electrical energy from a low-voltage power supply and to provide high-voltage power to the electrode, a battery charger, and a switch module coupled to the battery charger, the converter, and first and second batteries. The switch module is selectively switchable between first and second conditions. In the first condition, the first battery is coupled to the battery charger and decoupled from the high-voltage converter, while the second battery is coupled to the high-voltage converter and decoupled from the battery charger. In the second condition, the first battery is coupled to the high-voltage converter and decoupled from the battery charger, while the second battery is coupled to the battery charger and decoupled from the converter.
Abstract:
Technologies are provided for employing an ion flow to control a combustion reaction. A combustion reaction is supported at a burner or fuel source. One or more electrical signals are applied to an ionizer to generate an ion flow having a first polarity. The ion flow is introduced to the combustion reaction or a reactant at a first location, imparting a corresponding charge to the combustion reaction. The first location is at least intermittently upstream with respect to a reaction front of the combustion reaction. One or more of the electrical signals are applied to a first electrode at a second location downstream of the first location, which provokes a response by the combustion reaction according to the applied charge. The combustion reaction is controlled by selection of the one or more electrical signals.
Abstract:
Technologies are presented for selecting an electrode gain value for applying electricity to control a combustion reaction. F or example, a system can include one or more electrodes, an electrode gain selector configured to select an operative electrode gain value for the one or more electrodes, and a power supply operatively coupled to the one or more electrodes. The power supply can be configured to apply the electricity to the combustion reaction via the one or more electrodes at the operative electrode gain value.
Abstract:
A burner includes a flame positioning mechanism. The flame positioning mechanism includes a flame charger, a plurality of electrodes placed a respective distances along a fuel stream propagation path, and an electrode switch configured to place a subset of the plurality of electrodes into electrical continuity with a holding voltage. Current flow between the flame charge and the holding voltage anchors the flame to an electrode placed into electrical continuity with the holding voltage.
Abstract:
A low NOx burner is configured to support a combustion reaction at a selected fuel mixture by anchoring a flame at a conductive flame anchor responsive to current flow between charges carried by the flame and the conductive flame anchor.