Abstract:
An intraocular lens insertion device and a cartridge which enable the intraocular lens to be inserted into an eye more stably and easily than ever before. A supporting portion 102 of an intraocular lens 100 arranged on a lens-advancing side in a lens-advancing direction x is pressed against a protrusion 21 so as to be bent backward. Thus, releasing the intraocular lens 100 from a nozzle portion 13 is allowed to begin with the releasing of a curved portion of the supporting portion 102 that has become U-shaped and hard to move freely. As a result, there can be provided an intraocular lens insertion device and a cartridge which enable the intraocular lens 100 to be inserted into an eye more steadily and easily than ever before.
Abstract:
An aspect of the present invention relates to an eyeglass lens comprising a lens substrate and a vapor-deposited film either directly or indirectly on the lens substrate, wherein the vapor-deposited film is an oxide film of metal selected from the group consisting of zirconium and tantalum, with a proportion accounted for by regions observed in a streaky shape, in a columnar shape, or in a lump shape in a cross-sectional image of the vapor-deposited film obtained by a transmission electron microscope of equal to or less than 20%.
Abstract:
An aspect of the present invention relates to an eyeglass lens comprising a lens substrate and a vapor-deposited film either directly or indirectly on the lens substrate, wherein the vapor-deposited film is an oxide film of metal selected from the group consisting of zirconium and tantalum, with a proportion accounted for by regions observed in a streaky shape, in a columnar shape, or in a lump shape in a cross-sectional image of the vapor-deposited film obtained by a transmission electron microscope of equal to or less than 20%.
Abstract:
An intraocular lens in which deterioration in contrast is suppressed even when the optical axis of the intraocular lens is decentred from the optical axis of the eyeball when the intraocular lens is inserted into the eye while the advantage of a conventional aberration reduction type intraocular lens that the image is seen clearly is sustained by employing such a power distribution as respectively having at least one positive power deviation region (E1) having a power larger than that represented by the reference power distribution and at least one negative power deviation region (E2) having a power smaller than that represented by the reference power distribution in the central region of the intraocular lens assuming that a power distribution being set to cancel the spherical aberration of cornea when the intraocular lens is inserted into the eye is the reference power distribution.