Abstract:
A field emission cathode (40) and a light source (10) including a field emission cathode (40). The field emission cathode (40) includes a base body, and field emitting bodies in the form of fibres (42), attached to the base body. The fibres (42) have field emitting surfaces at their free ends, and the base body is a longitudinally extending core (41) formed by at least two wires (43) between which the fibres (42) are secured. The fibres (42) are distributed along at least a part of the length of the core (41) and extend radially outwards from the core (41). The light source comprises an evacuated container having walls, at least a portion of which consists of an outer glass layer (23, 23') which on at least a major part thereof is coated on the inside with a layer of phosphor (24, 24') forming a luminescent layer, and a conductive layer (25, 25') forming an anode. The layer of phosphor (24, 24') is excited to luminescence by electron bombardment from a field emission cathode (40, 40') located in the interior of the container. A modulator electrode (30, 30') is arranged between the cathode (40, 40') and the anode (25, 25') for creating the electrical field necessary for the emission of electrons. The field emission cathode (40, 40') includes a base body, and field emitting bodies in the form of fibres (42, 42'), attached to the base body, and the fibres (42, 42') have field emitting surfaces at their free ends.
Abstract:
An electron/photon source based on field emission, cathodoluminescence and photo-enhanced field emission, comprising an evacuated chamber inside a housing, further comprising an anode and a cathode arranged inside said evacuated chamber. Furthermore, the cathode is arranged to emit electrons when a voltage is applied between the anode and cathode, said anode being arranged to emit light at a first wavelength range when receiving electrons emitted from said cathode, and a wavelength range converting material arranged to receive said emitted light of said first wavelength range and emit light at a second wavelength range. In a novel way, the present invention makes it possible to, in two steps, convert the electrons emitted from the cathode to visible light. The invention has shown to be advantageous, and makes it possible to select new emission materials, manufactured at a fraction of the cost associated with the earlier used materials where the electron to visible light conversion was done in one step.
Abstract:
An anode (1) in a field emission light source (15) is disclosed. The anode (1) comprises an electrically conductive layer (3) and a luminescent layer (5) that is luminescent when excited by electron bombardment (7) caused by a potential difference (9) between the electrically conductive layer (3) and a cathode (11). Key features are that the luminescent layer (5) is arranged between the electrically conductive layer (3) and the cathode (11) and that the electrically conductive layer (3) is a transparent electrically conducting layer (3). Further, a field emission light source (15) comprising the anode (1) is also disclosed.
Abstract:
An improved field emission cathode and methods for fabricating such a cathode are disclosed. In the methods of the invention, the field emission cathode is made from at least one body containing a first substance. The method steps include a preparation of irregularities in an emitting surface of the body, adding to the emitting surface of the body ions of a second substance with a low work function, and modifying the emitting surface by inducing field emission in applying a variable electric field to the body and increasing the field strength in steps.
Abstract:
The light source comprises an evacuated container having walls, at least a portion of which consists of an outer glass layer (23, 23') which on at least a major part thereof is coated on the inside with a layer of phosphor (24, 24') forming a luminescent layer and a conductive layer (25, 25') forming an anode. The layer of phosphor (24, 24') is excited to luminescence by electron bombardment from a field emission cathode (40, 40') located in the interior of the container. A modulator electrode is arranged between the cathode (40, 40') and the anode (25, 25') for creating an electrical field necessary for the emission of electrons. The field emission cathode (40, 40') includes a longitudinally extending core (41, 41') having a central axis, and field emitting bodies (42, 42') extending from the core (41, 41'). The field emitting bodies (42, 42') are elongate and are distributed along at least a part of the length of the core (41, 41'). The field emitting bodies (42, 42') extend radially outwards from the core (41, 41') and have free ends provided with field emitting surfaces.