一种多模式飞行器地效试验方法

    公开(公告)号:CN117571245A

    公开(公告)日:2024-02-20

    申请号:CN202410053173.3

    申请日:2024-01-15

    Abstract: 本发明涉及地效试验领域,特别是一种多模式飞行器地效试验方法,包括以下步骤:S1、将底板装置水平设置在地面,并使底板装置上的移动带的上表面保持水平;S2、将飞机器模型设置在移动带的正上方,同时向飞机器模型吹出一定速度的风;S3、传动移动带转动,使移动带转速与风速相同,且方向相同,形成真实模拟平整地面效应;S4、通过高压子系统和负压子系统,控制移动带上部呈现不同形态,实现对多环境地面的模拟。本发明在于模拟不同环境地面对飞行器空气动力学特性的影响。

    一种用于风洞移动路面模拟的双电机协同驱动系统

    公开(公告)号:CN115683531A

    公开(公告)日:2023-02-03

    申请号:CN202211319523.3

    申请日:2022-10-26

    Abstract: 本发明涉及风洞实验领域,更具体的说是一种用于风洞移动路面模拟的双电机协同驱动系统,包括移动带、支撑基体、光电测速传感器、动力系统、传动机构、执行机构和配速控制系统,动力系统和传动机构均设置有两个;两个动力系统通过两个传动机构带动执行机构进行转动,执行机构带动移动带进行运动,所述光电测速传感器用于对移动带的速度进行检测,配速控制系统包括PLC主控单元和转矩传感器,两个三相异步电机上均设置有转矩传感器,光电测速传感器和PLC主控单元连接,两个三相异步电机均和PLC主控单元连接;可以保证移动带在满足高速运转的同时具备较高的负载能力。

    一种用于消除4米风洞试验附面层的移动带地板设备

    公开(公告)号:CN115655633A

    公开(公告)日:2023-01-31

    申请号:CN202211319205.7

    申请日:2022-10-26

    Abstract: 本发明涉及风洞试验领域,更具体的说是一种用于消除4米风洞试验附面层的移动带地板设备,包括支撑底座和运行基体,所述运行基体上安装驱动电机连接到驱动辊,从而带动驱动辊高速转动;所述运行基体的左右两侧均固定连接有纠偏电机,运行基体的左右两侧均滑动连接有轴承座,两个轴承座之间转动连接有从动辊,可以自动较正移动带的位置;所述运行基体上盖板下面中安装有冷却盘管连接到外部的循环冷却站,将高速运行中摩擦产生的大量热量耗散以保证设备安全;所述运行基体上表面有大量吹吸气孔连接到外部的吹吸气浮系统,从而抑制皮带上表面在运行中的跳动,使移动带能够高速稳定地运行。

    一种用于风洞移动带地板设备的控制系统

    公开(公告)号:CN115638950A

    公开(公告)日:2023-01-24

    申请号:CN202211319221.6

    申请日:2022-10-26

    Abstract: 本发明涉及风洞试验领域,更具体的说是一种用于风洞移动带地板设备的控制系统,包括主控单元、支撑底座和运行基体,支撑底座上固定连接有运行基体,运行基体上转动连接有驱动辊,运行基体上固定连接有两个纠偏系统,两个纠偏系统之间转动连接有从动辊,驱动辊和从动辊通过移动带传动连接,运行基体上固定连接有驱动驱动辊进行转动的驱动系统,驱动系统上设置有测速器;运行基体上盖板下面中安装有冷却盘管连接到外部的循环冷却站;运行基体上表面有大量吹吸气孔连接到外部的吹吸气浮系统;通过本发明所提出的控制系统,实现设备的驱动、纠偏、气浮、冷却系统的相互协调与配合,可以保证设备的稳定运行。

    一种基于磁流变液的软体机器人及其驱动方法

    公开(公告)号:CN114274126A

    公开(公告)日:2022-04-05

    申请号:CN202210071400.6

    申请日:2022-01-21

    Abstract: 本发明涉及机器人技术领域,更具体的说是一种基于磁流变液的软体机器人及其驱动方法。所述基于磁流变液的软体机器人,包括软体机械臂,以及位于软体机械臂内至少三个成周向均匀分布的流道,所述流道内填充有磁流变液;以及填充磁流变液的供液机构。所述驱动方法包括以下步骤:S1:通过对处于不同流道内的磁流变液分别独立施加压力,实现软体机械臂定向弯曲或伸缩;S2:当软体机械臂到达指定位置时,施加外部磁场,受磁场影响的磁流变液刚度增大,实现对软体机械臂预定动作的定形与保持。本申请具有能耗低、易控制、响应快、集成度高和承载力大的优点。

    基于微纳马达的光声信号检测与成像方法

    公开(公告)号:CN109998489B

    公开(公告)日:2021-09-17

    申请号:CN201910300715.1

    申请日:2019-04-15

    Abstract: 本发明涉及微纳马达应用领域,特别是涉及一种基于微纳马达的光声信号检测与成像方法,包括:S1:准备用于检测与成像的基于微纳马达的光声信号检测与成像系统;S2:电磁线圈产生磁场对微纳马达进行驱动和导向;S3:通过纳秒脉冲近红外激光光源对微纳马达进行照射,基于光热转换金属层的等离激元效应会激发周围液体的热弹性膨胀,周期性照射微纳马达产生光热转换,产生超声波光声信号;S4:超声波探测器检测接收超声波光声信号后,超声波光声信号经放大、滤波后传递信号至已启动的图像重构电脑进行算法成像。本发明可实现微纳马达在生物体内的跟踪定位成像,突破了微纳马达在生物体内难以跟踪成像的技术瓶颈。

    一种自生长柔性臂抓手装置

    公开(公告)号:CN113103212A

    公开(公告)日:2021-07-13

    申请号:CN202110480335.8

    申请日:2021-04-30

    Abstract: 本发明涉及机器人领域,具体说是一种自生长柔性臂抓手装置。包括:软体机器人主体,为柔性材质,并且通过充气生长并伸长,机械抓手,设置在软体机器人主体的生长端。所述软体机器人主体为外翻筒状结构,外翻筒状结构的一端密封,外翻筒状结构的密封端内翻穿过外翻筒状结构自身,外翻筒状结构在充气作用下外翻生长并伸长。本发明软体机器人主体自生长的运动方式提高了机器人的环境适应性,软体机器人主体的柔性特征避免了机器人与设备的刚性冲击,提高了其安全系数。

    一种柔性快速展开网状机器人

    公开(公告)号:CN109807905B

    公开(公告)日:2020-10-30

    申请号:CN201910108437.X

    申请日:2019-01-18

    Abstract: 本发明涉及一种柔性网状机器人,特别是涉及一种柔性快速展开网状机器人,一种柔性快速展开网状机器人,包括基座、支撑套筒和柔性抓捕网,所述支撑套筒设有四个,四个支撑套筒的后端分别与基座的四侧固定连接,四个支撑套筒的前端分别与柔性抓捕网的四角固定连接,本发明的一种柔性快速展开网状机器人,可以解决失重环境抓捕作业中冲击较大、机构展开速度慢、机构展开范围小的问题;本发明在失重环境抓捕作业中冲击较小,展开速度快,且展开的范围较大,可以实现较大覆盖面积的抓捕作业。

    一种可螺旋变形的软体机器人

    公开(公告)号:CN109732588B

    公开(公告)日:2020-10-09

    申请号:CN201910051147.6

    申请日:2019-01-18

    Abstract: 本发明涉及机器人技术领域,具体涉及一种软体机器人,特别是涉及一种可螺旋变形的软体机器人,包括主体套筒、外表面变形机构、行程控制线、变形控制线和气室,所述主体套筒的前端封闭,主体套筒的后端与气室固定连接;所述外表面变形机构固定连接在主体套筒的筒面上;所述行程控制线位于主体套筒内部,行程控制线的一端与主体套筒内部的前端固定连接,行程控制线的另一端固定连接在气室内;所述变形控制线位于主体套筒外部,变形控制线的一端与主体套筒外部的前端固定连接,变形控制线的另一端穿出外表面变形机构。本发明采用线、气双驱动控制,以实现长距运动与螺旋变形,环境适应性好,灵活性强,结构简单易于加工制造。

    一种基于后方拉线的软体机器人摄像头携带装置和方法

    公开(公告)号:CN109732580B

    公开(公告)日:2020-09-18

    申请号:CN201910049172.0

    申请日:2019-01-18

    Abstract: 本发明涉及一种摄像头携带装置和方法,更具体的说是一种基于后方拉线的软体机器人摄像头携带装置和方法,包括机器人生长伸长主体、拉线和前端跟随运动摄像机,所述机器人生长伸长主体充气向前端膨胀,拉线穿过机器人生长伸长主体向后拉动前端跟随运动摄像机与机器人生长伸长主体的前端接触;可以解决在失重环境中的软体机器人探测环境的摄像机的安装跟随运动问题,通过简单的结构实现前端跟随运动摄像机的携带和完成前端跟随运动摄像机的工作,通过机器人生长伸长主体长度的改变实现前端跟随运动摄像机的运动距离并通过控制充气泵进行反馈控制,满足更多的使用需求。

Patent Agency Ranking