Abstract:
PURPOSE: A carbon nanotube n-doping material and a method thereof, and a device using the same are provided to obtain long term doping stability in the air, when CNT is n-doped using a CNT n-doping material. CONSTITUTION: A CNT n-doping material includes more than one compound selected among nicotinamide or a compound chemically combined with nicotinamide. A CNT(15) is n-doped using the CNT n-doping material. The nicotinamide or the compound chemically combined with the nicotinamide is used as the reduced form. The CNT n-doping material further includes a solvent.
Abstract:
PURPOSE: A carbon nanotube transparent electrode and a preparation method thereof are provided to increase adhesion force to a substrate, film uniformity, and roughness. CONSTITUTION: A carbon nanotube transparent electrode comprises a CNT layer(20), and cover layer(30). The CNT layer is made of CNTs. The cover layer contains conductive particles and polymers. The cover layer covers either top or bottom or both the top and the bottom of the CNT layer. The polymer represents dopant, which dopes some of the conductive particles. The polymer is one or more materials selected from the group consisting of polyacrylic acid(PAA), polystyrene sulfonate(PSS), Nafion®, sodium polyacrylate, polyanetholesulfonic acid sodium salt, and nitrocellulose.
Abstract:
PURPOSE: A composite layer and a method for manufacturing the same are provided to control the surface property of particles while not affecting the size of particles by enabling the end part of a capping reagent to have the polarity similar to a polymer. CONSTITUTION: A composite layer is formed by mixing a polymer(33) and particles(20). The particle is capped by the capping reagent. The capping reagent includes a head part and an end part. The head part is stuck to particles. The end part heads for the outer side of particles. The absolute value of the difference in the water contact angle of the end part and polymer are 25% or less.
Abstract:
PURPOSE: A graphene sheet and a manufacturing method thereof are provided to offer wide usability in a membrane, a hydrogen reservoir, optical fiber, and an electrical device etc effectively by making the grapheme sheet with inexpensive cost. CONSTITUTION: A manufacturing method of a graphene sheet includes a step for forming a graphite catalyst, and a step for forming graphite by heat-treating a carbon supply source under the presence of the graphite catalyst. The carbon supply source is a compound containing the carbon of 1 - 6 units. The thermal processing temperature of the compound is 300 ~ 2,000°C.
Abstract:
아민 화합물을 포함하는 탄소 나노튜브(CNT) 박막 및 그 제조방법이 개시된다. 구체적으로 CNT 박막은, 플라스틱 기판상에 도포되는 CNT 조성물을 포함하는 것으로서, 이러한 CNT 조성물은 CNT, 및 분산 용매로 사용되며 150℃ 미만의 끓는점을 갖는 아민 화합물을 포함하는 것을 특징으로 하고, 또한 CNT 조성물은 플라스틱 기판상에 도포시에는 아민 화합물을 분산용매로서 포함하되, 아민 화합물은 CNT 조성물이 플라스틱 기판상에 도포된 후에 열처리로 제거되는 것을 특징으로 하는 구성을 갖는다. 또한, CNT 박막의 제조 방법은, 분산 용매로 사용되며 150℃ 미만의 끓는점을 갖는 아민 화합물을 CNT와 혼합하여 CNT 조성물을 준비하는 단계, CNT 조성물을 플라스틱 기판상에 도포하여 CNT 박막을 형성하는 단계, 및 CNT 박막을 열처리함으로써 CNT박막으로부터 아민 화합물을 제거하는 단계를 포함하는 것을 특징으로 하는 구성을 갖는다. 이와 같은 구성에 따른 CNT 박막 및 그 제조방법에 따르면, 전극의 저항을 감소시켜서 전극의 전기 전도도를 향상시킬 수 있는 효과가 있으며, 이러한 기술은 분산제 없이 CNT만을 사용해야만 하는 다양한 전자 소자에도 적용 가능하다. CNT, 아민 화합물, 부틸아민, 피리딘, NMP, 분산제, UV스펙트럼
Abstract:
An electrode, its preparation method, a lithium battery using the electrode, and an electrode coating composition are provided to maintain the potential of an active material layer even without using an excessive amount of a conductor and a binder and to prevent the cracking of an active material layer in case of charge/discharge. An electrode comprises an active material layer which is coated on a current collector and has a network structure, wherein the network structure comprises a carbon nanotube and a binder. The electrode is prepared by coating a dispersion comprising a carbon nanotube and a binder on a current collector to form a coating layer; and printing an electrode ink on the coating layer to form an active material layer.
Abstract:
본 발명은 탄소나노튜브를 개질하는 방법으로서, 라디칼 개시제 및 탄소나노튜브가 분산된 혼합액을 준비하는 단계; 상기 혼합액에 에너지를 가하여 상기 라디칼 개시제를 라디칼로 분해시키는 단계; 및 상기 분해된 라디칼이 탄소나노튜브 표면과 반응하는 단계;를 포함하며, 상기 라디칼이 탄소나노튜브와 반응한 후에 상기 탄소나노튜브로부터 분리되는 것을 특징으로 하는 탄소나노튜브의 개질 방법을 개시한다. 본 발명의 개질 방법은 라디칼이 탄소나노튜브와 반응한 다음 탄소나노튜브로부터 분리됨으로써 탄소나노튜브와의 화학적 결합 없이 탄소나노튜브의 표면을 개질 시켜 탄소나노튜브의 전도성을 증가시킬 수 있다. 탄소나노튜브, 라디칼 개시제
Abstract:
A CNT film is provided to improve conductivity of electrode including the CNT film by manufacturing the CNT film patterned by evaporating a CNT solution using a substrate composite forming and transforming a structure on the substrate. A CNT film contains a transparent substrate(50), a plurality of 3D space structures(51) mutually detached on the transparent substrate and a CNT(52) evaporated on the transparent substrate in which a plurality of 3D space structures are not formed. The plurality of 3D space structures are one or more selected from a group composed of cone, hemisphere, polypyramid, cant column and cylinder. The surface of the space structures is treated with a material having opposite polarity with the evaporated CNT solution.
Abstract:
A carbon nanotube separating method is provided to disperse and separate at the same time a carbon nanotube effectively using difference of polarity and non-polarity according to an oxidation/reduction reaction of a coal viologen. A carbon nanotube separating method comprises a step of separating phases of a water layer and a non-polar solvent layer from a mixture of carbon nanotube, viologen, water, non-polar solvent. The mixing weight rate of the viologen and the carbon nanotube in the mixture is 1:0.1 or 1:5. A semiconductive carbon nanotube is obtained in the water layer and a metallic carbon nanotube is obtained in the non-polar solvent layer.
Abstract:
A carbon nanotube thin film including metal nanoparticles and a manufacturing method thereof are provided to improve the conductivity of a flexible transparent nano electrode by thermally creating metal nanoparticles with a superior conductivity uniformly in a CNT thin film which is manufactured using a CNT dispersion solution in advance. A method for manufacturing a carbon nanotube(CNT) thin film including metal nanoparticles comprises a process metal Precursor(10) is adsorbed to the CNT surface and formed into metal nanoparticle(11) through thermal treatment. The thermal treatment temperature is less than 200‹C in the range that a plastic substrate is not deformed. In the composition of the CNT thin film, used metal is silver(Ag), gold(Au), copper(Cu), platinum(Pt), palladium(Pd) or etc.