리튬이차전지용 나노복합체 양극 활물질을 제조하는 방법
    61.
    发明公开
    리튬이차전지용 나노복합체 양극 활물질을 제조하는 방법 无效
    锂二次电池纳米复合材料的制备方法

    公开(公告)号:KR1020130125124A

    公开(公告)日:2013-11-18

    申请号:KR1020120048634

    申请日:2012-05-08

    Abstract: The present invention relates to a method for manufacturing a nanocomposite active material for a lithium secondary battery comprising the steps of: producing a first cathode active material represented by Li2MnO3 by mixing a lithium compound and a manganese compound; producing a co-precipitated hydroxide represented by (Nia-Mnb-Coc)(OH)2 by mixing nickel sulfate, manganese sulfate, a solution mixed with cobalt sulfate, sodium hydroxide solution, and aqueous ammonia; producing a second cathode active material represented by LiMO2(M=Nia-Mnb-Coc) by mixing the co-precipitated hydroxide and a lithium compound; and mixing the first cathode active material and the second cathode active material. Electrochemical properties such as stability in the range of high voltage, electrode capacity and cycle lifetime can be improved by producing nanocomposite for a lithium secondary battery represented by the chemical formula below. [chemical formula] xLi2MnO3-(1-x)LiMO2.

    Abstract translation: 本发明涉及一种锂二次电池用纳米复合材料活性物质的制造方法,其特征在于,包括以下步骤:通过混合锂化合物和锰化合物,制造由Li2MnO3表示的第一正极活性物质; 通过混合硫酸镍,硫酸锰,与硫酸钴混合的溶液,氢氧化钠溶液和氨水,制备由(Nia-Mnb-Coc)(OH)2表示的共沉淀氢氧化物; 通过混合共沉淀氢氧化物和锂化合物制备由LiMO2(M = Nia-Mnb-Coc)表示的第二阴极活性材料; 并混合第一阴极活性物质和第二阴极活性物质。 通过制备由下述化学式表示的锂二次电池的纳米复合材料,可以提高诸如高压范围,电极容量和循环寿命中的稳定性的电化学性能。 [化学式] xLi2MnO3-(1-x)LiMO2。

    리튬 티타늄 산화물계 음극활물질 나노입자의 카본코팅방법 및 이에 의해 제조된 카본코팅된 리튬 티타늄 산화물계 음극활물질 나노입자

    公开(公告)号:KR101282593B1

    公开(公告)日:2013-07-12

    申请号:KR1020120048704

    申请日:2012-05-08

    Abstract: PURPOSE: A carbon-coating method of a lithium titanium oxide-based negative electrode active material is provided to provide a negative electrode active material nanoparticle with excellent electric conductivity and ion conductivity, high electrochemical performance, and high discharging rate. CONSTITUTION: A carbon-coating method of a lithium titanium oxide-based negative electrode active material comprises: a step of forming a solution including a negative electrode active material represented by chemical formula: Li4Ti5O12 under the condition; a step of separating a negative electrode active material nanoparticle from the solution; and a step of inserting the negative electrode active material nanoparticle, and coating the surface of the nanoparticle. [Reference numerals] (a) Example 1; (b) Comparative example

    Abstract translation: 目的:提供一种基于氧化钛锂的负极活性物质的碳涂覆方法,以提供具有优异的导电性和离子传导性,高电化学性能和高放电率的负极活性材料纳米颗粒。 锂离子二氧化钛系负极活性物质的碳涂覆方法包括:在该条件下形成包含由化学式:Li 4 Ti 5 O 12表示的负极活性物质的溶液的步骤; 将负极活性物质纳米粒子与溶液分离的工序; 以及插入负极活性物质纳米粒子,涂布纳米粒子表面的工序。 (a)实施例1; (b)比较例

    인산화물계 리튬전지 양극활물질로부터의 리튬 회수 방법
    63.
    发明公开
    인산화물계 리튬전지 양극활물질로부터의 리튬 회수 방법 有权
    从氧化锂锂电池阴极活性材料中回收锂的方法

    公开(公告)号:KR1020120031832A

    公开(公告)日:2012-04-04

    申请号:KR1020100093452

    申请日:2010-09-27

    Abstract: PURPOSE: A method for recovering lithium from a phosphorus oxide cathode active material of a lithium battery is provided to minimize environmental pollution compared to the conventional method using inorganic acid, such as sulfate. CONSTITUTION: A method for recovering lithium from a phosphorus oxide cathode active material of a lithium battery comprises the steps of: dissolving a phosphorus oxide cathode active material of a lithium battery, including LiFePO4, and iron powder in a phosphoric acid aqueous solution in order to obtain a LiFePO4-dissolved solution; adding caustic soda to the LiFePO4-dissolved solution in order to deposit and remove iron and impurities; mixing the LiFePO4-dissolved solution with ethanol in order to deposit and separate lithium into lithium phosphate; and washing the lithium phosphate with ethanol in order to obtain lithium phosphate without impurities.

    Abstract translation: 目的:提供一种从锂电池的氧化磷阴极活性物质中回收锂的方法,与使用无机酸如硫酸盐的常规方法相比,可以最大限度地减少环境污染。 构成:从锂电池的氧化磷阴极活性物质中回收锂的方法包括以下步骤:将包含LiFePO 4的锂电池的磷氧化物正极活性物质和铁粉溶解在磷酸水溶液中,以便 获得溶解的LiFePO4溶液; 向溶于LiFePO4的溶液中加入苛性钠,以沉积和除去铁和杂质; 将LiFePO 4溶解的溶液与乙醇混合,以便将锂沉积并分离成磷酸锂; 并用乙醇洗涤磷酸锂,以获得无杂质的磷酸锂。

    리튬이온이차전지용 양극활물질의 제조방법
    64.
    发明授权
    리튬이온이차전지용 양극활물질의 제조방법 有权
    锂离子二次电池正极材料的制备方法

    公开(公告)号:KR101122715B1

    公开(公告)日:2012-03-07

    申请号:KR1020090092532

    申请日:2009-09-29

    Abstract: 본발명은리튬이차전지양극활물질의제조방법에관한것으로, 더욱구체적으로는출발물질로서리튬소스및 금속산화물(MnO, FeO, Ni(OH)또는 CoO)을혼합하여건식볼밀링을수행하는단계(단계 1); 상기단계 1에서얻어진혼합분말을대기중에서 550 - 750 ℃에서 1차열처리하여중간화합물인리튬금속산화물을합성하는단계(단계 2); 상기단계 2에서얻어진중간화합물을실리카(SiO) 및카본소스와혼합하여건식볼밀링을수행하는단계(단계 3); 및상기단계 3에서얻어진혼합분말을 550 - 800 ℃, 아르곤/수소분위기에서 2차열처리하여카본이코팅된양극활물질[LiMSiO/C(여기서, M=Mn, Fe, Ni 또는 Co)]을제조하는단계(단계 4)를포함하는리튬이차전지양극활물질의제조방법에관한것이다.

    인산화물계 양극활물질 나노입자 연속 제조방법
    66.
    发明公开
    인산화물계 양극활물질 나노입자 연속 제조방법 有权
    用于连续制备含有活性物质的含钛磷酸酯纳米材料的方法

    公开(公告)号:KR1020110071653A

    公开(公告)日:2011-06-29

    申请号:KR1020090128277

    申请日:2009-12-21

    CPC classification number: H01M4/5825 B82Y40/00 H01M10/052 Y02E60/122 Y02P70/54

    Abstract: PURPOSE: A successive manufacturing method of phosphate positive active material nanoparticles is provided to improve electrochemical features with an introduction of a metal dopant or a nonmetal dopant, and to control a formation of impurity with an introduction of a reducing agent. CONSTITUTION: The successive manufacturing method of phosphate positive active material nanoparticles includes following steps.(a) A lithium precursor solution, an iron precursor solution, a phosphoric acid precursor solution, a metal dopant or nonmetal dopant precursor solution and a reductant solution are prepared respectively.(b) The solutions of the step(a) are introduced consecutively to a mixer under a supercritical or subcritical condition. A solution containing 'phosphate positive active material nanoparticles' having a chemical formula of LiFe1-xMIxPO4 or Li1-xMIIxFePO4(0

    Abstract translation: 目的:提供磷酸盐正极活性物质纳米颗粒的连续制造方法,以通过引入金属掺杂剂或非金属掺杂剂来改善电化学特征,并通过引入还原剂来控制杂质的形成。 构成:磷酸正极活性物质纳米颗粒的连续制造方法包括以下步骤:(a)分别制备锂前体溶液,铁前体溶液,磷酸前体溶液,金属掺杂剂或非金属掺杂剂前体溶液和还原剂溶液 (b)步骤(a)的溶液在超临界或亚临界条件下连续引入混合器。 形成含有化学式为LiFe1-xMIxPO4或Li1-xMIIxFePO4(0 <= X <= 0.3,MI和MII为金属或贱金属)的“磷酸盐正极活性物质纳米颗粒”的溶液(c) 将“磷酸盐正极活性物质纳米颗粒”连续地引入到具有高压和高温的反应器中。 磷酸盐正极活性物质纳米颗粒的结晶度增加;(d)含有“磷酸盐正极活性物质纳米颗粒”的溶液被冷却。 (e)分离并收集磷酸盐正极活性物质纳米颗粒。

    전자 사이크로트론 공명 플라즈마 화학증착법에 의해 제조된 투명도전 아연주석복합산화박막 및 이의 제조방법과 이의 투명발열체
    68.
    发明公开
    전자 사이크로트론 공명 플라즈마 화학증착법에 의해 제조된 투명도전 아연주석복합산화박막 및 이의 제조방법과 이의 투명발열체 有权
    ZINC-TIN复合透明导电氧化膜和使用电子循环共振等离子体化学气相沉积和透明发热体的锌锡复合透明导电氧化膜的制备方法

    公开(公告)号:KR1020100035092A

    公开(公告)日:2010-04-02

    申请号:KR1020090062238

    申请日:2009-07-08

    Abstract: PURPOSE: A method for preparing a zinc-tin composite transparent conductive oxide film is provided to synthesize a zinc-tin composite oxide film with excellent electrical conductivity in an electron cyclotron resonance plasma chemical vapor deposition compared with ZnSnO3, Zn2SnO4 obtainable from a physical vapor deposition. CONSTITUTION: A method for preparing a zinc-tin composite transparent conductive oxide film comprises the steps of: forming high-density plasma ion in a large area range by electron cyclotron resonance; forming over-condensed metallic ion by supplying a metal precursor to the lower end where the plasma ion is formed; and performing deposition by chemically bonding the plasma ion and over-condensed metallic ion within a reactor attached with an ion protection metal shield consisting of an ion-protective cover and a side board.

    Abstract translation: 目的:提供一种制备锌 - 锡复合透明导电氧化膜的方法,用于在电子回旋共振等离子体化学气相沉积中合成具有优异导电性的锌 - 锡复合氧化物膜,与ZnSnO3,Zn2SnO4相比,可从物理气相沉积 。 构成:制备锌 - 锡复合透明导电氧化物膜的方法包括以下步骤:通过电子回旋共振在大面积范围内形成高密度等离子体离子; 通过向形成等离子体离子的下端提供金属前体而形成过度稠合的金属离子; 并且在附着有由离子保护盖和侧板组成的离子保护金属屏蔽的反应器中化学键合等离子体离子和过度冷凝的金属离子进行沉积。

    리튬이차전지용 실리콘 음극 물질 및 이의 제조 방법
    69.
    发明授权
    리튬이차전지용 실리콘 음극 물질 및 이의 제조 방법 有权
    用于锂二次电池的硅酮阳极材料及其制备方法

    公开(公告)号:KR100666476B1

    公开(公告)日:2007-01-11

    申请号:KR1020050039883

    申请日:2005-05-12

    Abstract: 본 발명은 나노 크기의 실리콘 입자와 셀루로즈계 식물성 섬유를 기계적 방법으로 분쇄하고 혼합한 후, 불활성 환원 분위기에서 열처리하여 식물성 섬유를 탄화시키는 방법으로 실리콘 입자의 전기 전도도를 획기적으로 향상 시킨다. 본 발명에 의해 개발된 실리콘 활물질은 전기 전도도가 우수하고 계속되는 충/방전 반응에도 부피변화가 작기 때문에 고용량, 고율 충/방전 특성 및 싸이클 성능이 향상된 차세대 리튬이온 이차전지를 제공한다.
    실리콘 음극 물질, 식물성 섬유, 리튬이온전지, 전기 전도도, 싸이클 성능

Patent Agency Ranking