Abstract:
본 발명은 자연 상태의 풀에서 추출한 그래미노이드(graminoids)를 플라즈모닉 (plasmonic) 은 나노입자가 배열되어 있는 반도체 전자수용체에 유기 리간드 물질을 이용하여 접합하는 방법을 특징으로 하는 생체-태양전지에 제조 기술에 관한 것이다. 은 나노입자의 표면 플라즈몬 현상을 통해 그래미노이드의 광전자 발생률을 높이고 광전자 발생체와 전자수용체간의 접합 최적화를 통해 전자수용체로 전달되는 유효 광전자량을 증가시켜 고효율의 생체-태양전지를 제조 할 수 있는 신재생 에너지 발생용 소자 제조 기술에 관한 것이다.
Abstract:
The present invention relates to a semiconductor photocatalyst coated uniformly with a graphitic carbon film on the surface thereof and a fabricating method thereof. The present invention forms a graphitic carbon film having a thickness of 1 nm or less uniformly on the surface of a semiconductor by performing hydrothermal synthesis and pyrolysis on glucose, so as to keep the original structure and crystallinity of the semiconductor photocatalyst which is a support for the carbon film. The carbon film-semiconductor composite photocatalyst fabricated according to the present invention inhibits electron-hole recombination effectively because photoelectrons generated from the semiconductor photocatalyst are transmitted well to protons in an external system; and has high activity as a photocatalyst for generating hydrogen by electrolyzing water.
Abstract:
PURPOSE: A manufacturing method of a negative electrode active material is provided to economically manufacture a composite active material for a negative electrode, having improved cycle performance. CONSTITUTION: A manufacturing method of a negative electrode active material comprises a step of mixing a carbon-containing resin particle and silicon nanoparticle; a step of forming a resin matrix containing the silicon nanoparticle by compressing the resin particle; and a step of heat-treating the resin matrix, and forming the porous carbon matrix containing silicon nanoparticle. The resin matrix has a spherical particle shape, and the carbon matrix also has a spherical particle shape. The carbon-containing resin particle additionally includes nitrogen atoms. On the spherical carbon particle, the nitrogen is doped. [Reference numerals] (AA) Mix resin particles containing carbon and silicon nanoparticles; (BB) Condense resin particles; (CC) Heat-process/carbonize resin matrix
Abstract:
PURPOSE: Nitrogen-doped graphene, an ultra capacitor which includes the same, and a manufacturing method thereof are provided to improve the energy storage capacity and the life span of cycle by substituting at least one carbon atom with nitrogen, and arranging the nitrogen doping similar to pyridine, pyrrole, or graphite. CONSTITUTION: Nitrogen-doped graphene includes at least one carbon atom substituted with nitrogen. The nitrogen doping is arranged in a pyridine-like sequence, a pyrrole-like sequence, or a graphite-like sequence. The amount of the nitrogen doping is 1.5-3.0%. A manufacturing method of the nitrogen-doped graphene includes the following steps. Graphene is treated with nitrogen plasma. The graphene is annealed at a temperature of 250-400 deg. C. [Reference numerals] (AA) Graphene oxide; (BB) Nitrogen plasma; (CC) Nitrogen doped graphene
Abstract:
PURPOSE: A method for preparing light emitting nanoparticles using a core/shell structure is provided to reduce host-guest material consumption by surrounding the external side of a silica nanoparticle with the host-guest material. CONSTITUTION: A silica nanoparticle is prepared based on a sol-gel reaction. A host-guest shell material with a light emitting property is coated around the core of the silica nanoparticle to obtain a sphere light emitting particle. The host-guest material is composed of a metal ion or a metal oxide. The guest material is one or more selected from erbium, europium, ytterbium, holmium, thulium, or the oxide of the same. The host material is one or more selected from yttrium, gadolinium, vanadium, zinc, titanium, or the oxide of the same.
Abstract:
PURPOSE: A synthesis method of a micro-porous triple bond based polymer network is provided to simplify the synthesis method, and to mass produce the polymer network while forming a triple bond at the same time. CONSTITUTION: A synthesis method of a micro-porous triple bond based polymer network(TPN-1) comprises the following steps: inserting tetrakis(4-iodophenyl) methane, CuI, and dichlorobis(triphenylphosphine)peledium(II) to a circular flask, adding piperidine as a solvent before bubbling acetylene gas, and stirring for 12 hours in 60 deg C to initiate the coupling reaction; stirring the outcome for 12 hours without bubbling the acetylene gas, heat-processing before cooling at room temperature, filtering, and washing the outcome with dichloromethane, water, and acetone; and drying the washed product for 23~25 hours, and heat processing for 170~190 minutes in 140~160 deg C.
Abstract:
본 발명은 코어/쉘 구조를 가지는 나노입자를 이용하여 물로부터 수소를 발생시키는 방법에 관한 것이다. 코어 부분에 순수한 금속 나노입자를 형성시키고, 이종 물질로 쉘은 코어 부분의 금속 나노입자의 산화를 방지하는 역할을 한다. 코어/쉘 나노입자가 물과 접촉할 때, 쉘을 에칭시키거나 또는 쉘 물질의 용융점 이상으로 온도를 올려 코어부분의 순수한 금속입자를 물에 노출시켜, 금속의 산화반응을 통해 수소를 발생하는 것을 특징으로 한다. 본 발명은 쉘 부분이 코어 부분의 금속의 산화를 방지하고, 물에 노출되었을 경우에만 금속의 산화반응을 일으켜 물로부터 수소를 제조하는 방법으로써, 본 발명에 의하여 수소를 발생시키는 방법은 입자의 변화 없이 보관 및 운반이 용이할 뿐만 아니라, 나노 크기의 입자이기 때문에 빠른 수소 발생 반응을 얻을 수 있으므로, 효율적이고 경제적인 수소 발생 방법을 제공할 수 있다. 코어/쉘 구조, 금속, 산화, 물, 수소, 수소 발생, 수소 생산