Abstract:
PURPOSE: A titanate nanostructure and a manufacturing method thereof are provided to control the length and the diameter of the nanostructure by controlling an alkaline solution. CONSTITUTION: A titanate nanostructure is marked with AaBbTixOy. A and B are alkali metals, and a, b, x, and y are fixed numbers. A manufacturing method of the titanate nanostructure comprises the following steps: mixing an alkaline solution with titanium dioxide powder to form a titanium dioxide solution; hydrothermally synthesizing the titanium dioxide solution for 120~180 deg C, to obtain the titanate nanostructure.
Abstract:
본 발명은 흑연 구조의 탄소막을 반도체 광촉매 표면에 균일하게 코팅한 물질 및 이의 제조방법에 관한 것이다. 본 발명은 글루코스를 수열합성법과 열분해법(pyrolysis) 방법을 이용하여 반도체 표면에 두께 1 나노미터 이하의 흑연구조의 탄소막을 균일하게 형성시키면서, 탄소막의 지지체가 되는 반도체 광촉매 본연의 구조와 결정성을 그대로 유지하는 것을 특징으로 한다. 본 발명에 의해 개발된 탄소막-반도체 복합체 광촉매의 경우 반도체 광촉매에 발생되는 광전자들을 외부 계의 양성자에게 잘 전달할 수 있게 되므로 전자 정공 재결합을 효과적으로 억제할 수 있으며, 물을 분해하여 수소를 발생시키는 광촉매로서 매우 높을 활성을 가지고 있다.
Abstract:
The present invention relates to a semiconductor photocatalyst coated uniformly with a graphitic carbon film on the surface thereof and a fabricating method thereof. The present invention forms a graphitic carbon film having a thickness of 1 nm or less uniformly on the surface of a semiconductor by performing hydrothermal synthesis and pyrolysis on glucose, so as to keep the original structure and crystallinity of the semiconductor photocatalyst which is a support for the carbon film. The carbon film-semiconductor composite photocatalyst fabricated according to the present invention inhibits electron-hole recombination effectively because photoelectrons generated from the semiconductor photocatalyst are transmitted well to protons in an external system; and has high activity as a photocatalyst for generating hydrogen by electrolyzing water.
Abstract:
PURPOSE: A synthesis method of a micro-porous triple bond based polymer network is provided to simplify the synthesis method, and to mass produce the polymer network while forming a triple bond at the same time. CONSTITUTION: A synthesis method of a micro-porous triple bond based polymer network(TPN-1) comprises the following steps: inserting tetrakis(4-iodophenyl) methane, CuI, and dichlorobis(triphenylphosphine)peledium(II) to a circular flask, adding piperidine as a solvent before bubbling acetylene gas, and stirring for 12 hours in 60 deg C to initiate the coupling reaction; stirring the outcome for 12 hours without bubbling the acetylene gas, heat-processing before cooling at room temperature, filtering, and washing the outcome with dichloromethane, water, and acetone; and drying the washed product for 23~25 hours, and heat processing for 170~190 minutes in 140~160 deg C.
Abstract:
PURPOSE: A manufacturing method of titanium embedded layered double hydroxide photo-catalysts is provided to simplify manufacturing processes using nickel or copper, and titanium as metals. CONSTITUTION: A manufacturing method of titanium embedded layered double hydroxide photo-catalysts for oxidizing water under a visible ray region includes the following: a metal precursor and a titanium metal precursor are added into an urea aqueous solution to be dissolved, and a solution is obtained; the solution is reacted to obtain a resultant product; the resultant product is centrifuged by a centrifuge, and a washing process and a drying process are further implemented.
Abstract:
PURPOSE: A method for manufacturing a hybrid of magnetite nanoparticles and carbonnitride nanotube is provided to obtain the hybrid which is uniformly doped on the surface of the carbonnitride nanotube while maintaining superparamagnetism of the magnetite nanoparticles. CONSTITUTION: A method for manufacturing a hybrid of magnetite nanoparticles and carbonnitride nanotube comprises the following steps: manufacturing the carbonnitride nanotube through a plasma chemical vapor deposition process; obtaining the mixture by adding steel acetylacetonate to the mixture after dissolving the carbonnitride nanotube in triethyleneglycol; and manufacturing the hybrid of the magnetite nanoparticle and the carbonnitride nanotube in which the magnetite nanoparticle is doped by cooling the mixture.