Abstract:
본 발명은 유연한 기판을 갖는 태양전지의 제조방법에 관한 것으로서, 유리기판 등의 모체 기판에 분리층을 형성하고 그 위에 유연한 기판을 형성한 이후 태양전지를 제조한 뒤에 상기 분리층에 레이저를 조사하여 모체기판을 분리 제거하는 단계를 포함하여 공정이 간단하고 저비용으로 양산성을 높일 수 있는 유연한 기판을 갖는 태양전지의 제조방법이다.
Abstract:
The present invention relates to a solar cell having a rear electrode in which a reflection film is formed and a method for manufacturing the same. More specifically, the present invention relates to a technique capable of improving a photoelectric conversion rate by forming a reflection film on a rear electrode for a thin film solar cell having a CIGS (Cu(InGa)Se_2) light absorbing layer. The method for manufacturing a rear electrode in a solar cell, according to the present invention, comprises the steps of: (s1000) forming a rear electrode layer (200) on a substrate (100); and (s2000) forming a transparent electrode reflection film (210) on the rear electrode layer (200).
Abstract:
Disclosed are an effusion cell with a source contamination preventing structure and an evaporation equipment having the same. The effusion cell with a source contamination preventing structure, according to the present invention, comprises a body having an external container providing an inner cylindrical space, a crucible placed in the inner space of the external container, and a heater disposed between the external container and the crucible to heat the crucible; a first shutter having a first shutter plate disposed at an upper portion of an outlet of the body and closing the outlet at a given interval, and a first side cover extending from a portion of a circumference of the first shutter plate to the outlet of the body to close a portion of the circumference of the upper portion of the outlet; and a second shutter having a second shutter plate disposed at an upper portion of the first shutter and closing the shutter plate at a given interval, and a second side cover extending from a portion of a circumference of the second shutter plate to the outlet of the body to close a portion of the circumference of the upper portion of the outlet.
Abstract:
The present invention relates to a flexible solar cell having a flexible substrate, which can improve photoelectric conversion efficiency because the sunlight reaches a light absorbing layer without any loss and without passing through a buffer layer, a front electrode, and a grid electrode by having a backside buffer layer and which enables an electron-hole generated by the light absorbing layer to shorten a moving distance to the electrode or the buffer layer by preparing the buffer layer and a first electrode to be engaged with each other in a sawtooth form.
Abstract:
The present invention relates to a flexible substrate CIGS solar cell in which a Na supply method is improved. The flexible substrate CIGS solar cell is made of; a substrate of a flexible material; a back side electrode formed on the substrate; a CIGS light absorption layer formed on the back side electrode; a buffer layer formed on the CIGS light absorption layer, and a front side electrode formed on the buffer layer. The back side electrode is a Na added Mo electrode layer which is made of a single layer. The present invention applies the Na added Mo electrode layer which shows low specific resistance of 1/10 than an existing Na added Mo electrode layer and provides a flexible substrate CIGS solar cell of high efficiency which forms a back side electrode into a signal layer. Also, a process which forms a back side electrode is formed of a process which forms the Na added Mo electrode layer of the single layer only. Therefore, a manufacturing process and manufacturing costs of the flexible substrate CIGS solar cell are reduced. Furthermore, the present invention comprises a process of eliminating a Na compound formed on the surface while a Na added metal layer is exposed to air and solves a problem in which a light absorption layer is separated or the conversion efficiency of a solar cell is reduced.
Abstract:
PURPOSE: A method for manufacturing a CI(G)S-based thin film for a solar cell by using flux with a low melting point and the CI(G)S-based thin film manufactured by the same are provided to reduce manufacturing costs by selenization at low temperatures. CONSTITUTION: CI(G)S-based nanoparticles are manufactured. The CI(G)S-based nanoparticles and slurry including flux with a melting point between 30 and 400 degrees centigrade are manufactured. A CI(G)S-based precursor thin film is formed by coating the slurry on a substrate without a vibration. The CI(G)S-based precursor thin film is dried. The CI(G)S-based precursor thin film is selenized by using selenium steam. [Reference numerals] (AA) Start; (BB) Manufacture CI(G)S nanoparticles; (CC) Manufacture slurry; (DD) Non-vibration coating; (EE) Dry; (FF) Selenization and thermal process; (GG) Step a; (HH) Step b; (II) Step c; (JJ) Step d; (KK) Step e; (LL) End
Abstract:
PURPOSE: An actinography device and a method thereof for inspecting the reliability of a solar cell, and a device and a method for inspecting the reliability of the solar cell are provided to measure solar radiation on the solar cell, thereby measuring the solar radiation stably and reliably. CONSTITUTION: An actinography device for inspecting the reliability of a solar cell comprises a first solar cell(110), a second solar cell(120), temperature sensors(130, 140), a cooling element(150), and a controller(180). The first solar cell generates electricity by receiving radiation greater than a predetermined level. The second solar cell generates electricity by receiving radiation greater than a predetermined level. The temperature sensors measure the temperature of the second solar cell. The cooling element cools the first solar cell. The controller measures radiation applied to the first solar cell, and controls the cooling element to prevent the temperature of the first solar cell from increasing over the predetermined temperature by the temperature measured by the second solar cell using the temperature sensors.
Abstract:
PURPOSE: A solar cell deterioration accelerating apparatus, a maximum load point tracing apparatus, a solar cell deterioration accelerating method, and a maximum load point tracing method are provided to accurately predict a solar cell by applying load of a solar cell. CONSTITUTION: A solar cell fixing unit(120) fixes a solar cell(200). A load unit(112) is connected to the solar cell. The loading unit has a variable load value. A power measuring unit measures power outputted from the solar cell. A load control unit(116) is formed by using the maximum power value of the solar cell and controls a load value of the loading unit. [Reference numerals] (112) Load unit; (114) Load control unit; (116) Voltage control unit; (120) Solar cell fixing unit; (130) Environment control unit; (200) Solar cell
Abstract:
태양전지 박막 증착장치, 방법, 시스템이 제공된다. 본 발명에 따른 태양전지 박막 증착장치는 기판을 경계로 구분되는 복수 개의 단위 챔버; 복수 개의 단위 챔버에 증착가스를 독립적으로 주입시키기 위한 증착가스 주입부; 및 상기 단위 챔버 내에 각각 구비되며, 상기 주입된 증착가스를 분해하기 위한 분해 수단을 포함하며, 상기 기판의 양면 각각은 상기 복수 개의 단위 챔버로 노출되며, 본 발명에 따른 태양전지 박막 증착장치 및 이를 이용한 제조방법은 기판의 회전 없이 고정된 상태에서 기판의 양면 증착이 가능하게 한다. 따라서, 일면에 대해서 하나의 층만이 적층되는 종래 기술에 비하여, 요구되는 설비의 수가 획기적으로 줄 수 있으며, 그 결과 본 발명에 따른 증착장치는 종래 기술에 비하여 경제성이 우수하다. 더 나아가, 증착공정의 수가 감소됨에 따라, 기판의 외부노출 시간을 또한 줄며, 그 결과 기판표면의 오염을 최소화할 수 있으며, 우수한 신뢰성을 갖는 태양전지의 제조가 가능하다.
Abstract:
PURPOSE: A transparent conductive film and a manufacturing method thereof are provided to improve electrical characteristics and light capture performance by forming surface texture on a light capture layer. CONSTITUTION: A light transmission layer(10) is formed on a substrate(100). A light capture layer(20) is formed on the light transmission layer. A surface texture structure is formed by etching the surface of the light capture layer. The light transmission layer is formed by evaporating a transparent conductive thin film of a ZnO system at the temperature greater than or equal to 300°C. The light capture layer is formed by evaporating the transparent conductive thin film of the ZnO system at the temperature less than 300°C.