Abstract:
본 발명은 탄소 담체 표면에 카르복실기(-COOH, Carboxyl group)를 형성하는 단계(단계 1); 및 상기 단계 1에서 카르복실기가 형성된 탄소 담체와 촉매 활성 금속의 전구체 및 환원제를 혼합하고, 초음파 처리하여 탄소 담체에 촉매 활성 금속을 함침시키는 단계(단계 2);를 포함하는 합성가스로부터의 함산소탄소화합물 제조용 촉매의 제조방법을 제공한다. 본 발명에 따른 합성가스로부터의 함산소탄소화합물 제조용 촉매의 제조방법은 종래의 제조방법에서 사용되는 유기 금속 화합물로 이루어진 복합물보다 훨씬 저렴한 촉매 활성 금속의 전구체를 사용하여 제조하며, 값비싼 귀금속 함량이 낮아 경제적이며, 손쉽게 공기 중에서 짧은 합성 시간으로 촉매를 제조할 수 있는 효과가 있다. 또한, 본 발명에 따른 제조방법으로 제조된 촉매는 C 2 + 함산소탄소화합물의 선택도와 생산성을 극대화시킬 수 있는 균일한 금속 입자 크기를 가짐으로써 촉매 활성 및 선택도가 높은 효과가 있다.
Abstract:
본 발명은 중간생성물의 선택도 모니터링을 통한 메탄올로부터 경질올레핀을 제조하는 순환유동층 공정의 효율적 운전에 관한 것으로, 구체적으로 디메틸에테르(DME) 선택도를 모니터링하여 사용된 촉매의 비활성화 정도를 예측하고 촉매 재생을 위한 공기 유량을 조절하여 최적화된 코크 정도를 유지시킴으로써 경질올레핀계 탄화수소의 생산성을 효과적으로 증진할 수 있고, 특히 에틸렌 및 프로필렌에 대한 우수한 선택성을 유지할 수 있는 방법에 관한 것이다.
Abstract:
The present invention relates to a manufacturing method for a layered mesoporous SAPO-34 molecular sieve and to a manufacturing method for light olefin using the layered mesoporous SAPO-34 molecular sieve manufactured thereby and, more specifically, to a manufacturing method for a layered mesoporous SAPO-34 molecular sieve comprising: (Step 1) a step of adding 1.0-2.0 moles of silica composites (based on SiO_2) based on 1 mole of alumina precursors (based on Al_2O_3) as a step of mixing silica composites including organic templates and silica precursors, alumina precursors and water; (Step 2) a step of manufacturing synthesis gel by adding phosphoric acid and synthetic templates in a mixed solution manufactured in step 1 and stirring the same; (Step 3) a step of manufacturing SAPO-34 sieve by performing hydrothermal synthesis on the synthesis gel manufactured in step 2; and (Step 4) a step of sintering the SAPO-34 sieve manufactured in step 3. The manufacturing method for SAPO-34 according to the present invention has excellent life expectancy in MTO reaction compared with that of a catalyst using existing SAPO-34 since SAPO-34 sieve with small crystals of uniform distribution by controlling the amount of silica composites and reducing the amount of water during reaction and improves productivity when light olefin is manufactured by using the same as a catalyst.
Abstract:
본 발명은 나노크기의 메조다공성 탄소담지체를 가진 수상개질 반응용 촉매, 이의 제조방법 및 이를 이용하여 함산소 탄화수소로부터 수상개질 반응을 통한 수소의 제조방법에 관한 것으로, 본 발명에 따른 촉매를 함산소 탄화수소로부터 수소를 제조하기 위한 수상개질 반응에 사용할 경우, 종래 마이크로크기의 메조다공성 탄소 담지체에 비해 표면적이 더 넓어 활성금속의 분산 정도를 높이고, 메조기공 구조가 더 잘 발달되어 물질전달과 확산속도가 더 빠른 특성으로 인해 수소 기체의 전환율, 생성수율 및 생성속도를 향상시키는 효과가 있다.
Abstract:
The present invention relates to a catalyst for preparing 1,3-butadiene in which a transition metal compound is supported on regular mesoporous silica, and a method for preparing 1,3-butadiene using the same. Specifically, the catalyst of the present invention can improve selectivity by optimizing the type and characteristics of the silica and specifying the type and content of a transition metal oxide; can increase the yield of 1,3-butadiene by highly dispersed active sites due to a high surface area; and facilitates a diffusion of a reactant and a product and the transfer of materials by having a regular mesoporous structure. In addition, since all of the active sites are not concentrated so as to be able to equally and uniformly participate in a reaction, the deterioration of activity is inhibited compared with a conventional silica catalyst in which micropores and mesopores coexist, thereby remarkably improving the lifetime of the catalyst compared with a conventional silica-based catalyst, and thus process operation efficiency can be improved due to a longer recycling period. Therefore, the catalyst of the present invention can be useful for preparing the 1,3-butadiene. [Reference numerals] (AA) Example 1; (BB) Example 2; (CC) Example 3; (DD) Example 4; (EE) Example 5; (FF) Example 6; (GG) Example 7; (HH) Example 8; (II) Example 9; (JJ) Example 10; (KK) Comparative example 1; (LL) Comparative example 2; (MM) Comparative example 3
Abstract:
PURPOSE: A platinum impregnation catalyst, a manufacturing method thereof, and a manufacturing method of hydrogen from oxygenated compound by using the same are provided to be structurally stable in a step which selectively manufactures hydrogen and to increase hydrogen production speed and manufacture yield of hydrogen. CONSTITUTION: A platinum impregnation catalyst uses 8B group transition metal-magnesium- aluminum oxide with a hydrotalcite structure as a carrier which is used for manufacturing hydrogen. A manufacturing method of the platinum impregnation catalyst comprises the following steps: manufacturing a mixed solution by introducing an aqueous solution, in which 8B group transition metal salt, magnesium salt and aluminum salt are dissolved, and basic 2 precipitation agent to a first precipitation agent aqueous solution; manufacturing mixed metal hydroxide form precipitate; leaving precipitate at 30-90 deg. Celsius; manufacturing mixed metal hydroxide powder by drying the precipitate; manufacturing carrier for catalyst by plasticizing the hydroxide powder in the air; and dipping the platinum into the carrier for catalyst. [Reference numerals] (AA) Hydrotalcite; (BB) Platinum precursor; (CC) Solvent; (DD) Mixing after precipitating; (EE) Dry100°C12 hours after spreading 60°C; (FF) Platinum/hydrotalcite; (GG) Platinum composite catalyst