Abstract:
Described is a user equipment (UE) that is connected to a network component, the user equipment and the network component configured with a carrier aggregation functionality. The UE performs a method that includes determining a primary component carrier and at least one secondary component carrier associated with the carrier aggregation functionality of the user equipment, determining a component carrier quality measurement (CQM) metric for each of the component carriers, when an uplink data packet is capable of being transmitted over the secondary component carrier, selecting one of the primary component carrier and the at least one secondary component carrier based on the CQM metrics, generating measurement data indicative of the selected component carrier to increase a probability to transmit the uplink data packet over the selected component carrier and transmitting the measurement data to the network component.
Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.
Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.
Abstract:
Method and apparatus for facilitating return to a first wireless network from a second wireless network by a wireless communication device is provided. A method includes the wireless communication device engaging in data transfer for an application session on the first wireless network; participating in a CSFB procedure to transition from the first wireless network to the second wireless network for servicing a voice connection; buffering data received for the application session before and/or during the CSFB procedure; releasing the voice connection; discontinuing requests for downlink data for the application session in response to termination of the voice connection to provide a gap in data transfer; reselecting to the first wireless network during the gap in data transfer; using the buffered data to continue the application session during reselection; and resuming data transfer for the application session on the first wireless network after completing reselection.
Abstract:
Loading estimation of 3GPP networks. One or more metrics relating to a cell of a 3GPP network may be measured. Loading of the cell may be estimated based on the one or more metrics. The metrics may include metrics measured, estimated, or derived at multiple layers, possibly including one or more of physical layer, radio link control layer, radio resource control layer, or application layer metrics.
Abstract:
Apparatus, system and methods for evaluating link quality within a cellular system. A user equipment (“UE”) is connected to a network, wherein the UE communicates data to the network on an uplink (“UL”) link. The UE determines a requested buffer size for a UL communication, determines a transport block size for the UL communication based on a primary set of allocation parameters, and compares the requested buffer size to the transport block size to determine if a data rate for the UL communication satisfies a threshold. When the data rate satisfies the threshold, the UE identifies the UL link as a good quality link and sends acceptable link quality feedback to the network. When the data rate does not satisfy the threshold, the UE performs a further action to test a quality of the UL link.
Abstract:
Techniques are disclosed relating to determining whether to bar a public land mobile network (PLMN). In some embodiments, a mobile device is configured to increment a count of failed requests to a PLMN for requests that are explicitly rejected by a base station and not for other requests. In some embodiments, the mobile device is configured to bar the PLMN in response to the count reaching a threshold value. In some embodiments, for requests that fail without explicit rejection, the mobile device is configured to wait a predetermined time interval before transmitting another request to the base station. The time interval may be telescoped for subsequent requests that fail without a rejection. In various embodiments, the disclosed techniques may reduce power consumption while avoiding premature PLMN barring.
Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
This disclosure relates to techniques for UEs (including link budget limited UEs) to improve communications performance with a cellular network. A UE may be configured to provide a request (for a first process executed by the UE) for a high-bandwidth connection to a base station of a cellular network during a first RRC connection. In some embodiments, the RRC connection is established by another process. In some embodiments, the UE is configured to receive signaling from the base station indicating that the base station cannot satisfy the high-bandwidth connection request and the UE is configured not to send or receive data for the high-bandwidth connection during the first RRC connection in response to the signaling. In some embodiments, the UE is configured to re-send the request on a second, subsequent RRC connection that is not established by the first process. In some embodiments, the UE is configured to opportunistically re-send the request on subsequent RRC connections established by one or more other processes until the base station is able to grant the request.
Abstract:
This disclosure relates to techniques for a link budget limited UE to improve communications performance with a cellular network. The UE may perform signal to interference noise ratio (SINR) measurements and use these measurements to adjust a received signal power value that is provided to the cellular network as a received signal power measurement. The UE may generate the received signal power value based at least in part on the SINR measurement in order to reduce the likelihood of handover when the UE has good SINR but poor received signal power. The UE may also provide preferred configuration information to the base station which enhances the performance of the UE when link budget limited. The configuration information may specify one or more parameter values designed to provide improved performance for a link budget limited device.