Abstract:
Disclosed is a patterning device for patterning product structures onto a substrate and an associated substrate patterned using such a patterning device. The patterning device comprises target patterning elements for patterning at least one target from which a parameter of interest can be inferred. The target patterning elements and product patterning elements for patterning the product structures. The target patterning elements and product patterning elements are configured such that said at least one target has at least one boundary which is neither parallel nor perpendicular with respect to said product structures on said substrate.
Abstract:
Overlay error of a lithographic process is measured using a plurality of target structures, each target structure having a known overlay bias. A detection system captures a plurality of images (740) representing selected portions of radiation diffracted by the target structures under a plurality of different capture conditions (λ1, λ2). Pixel values of the captured images are combined (748) to obtain one or more synthesized images (750). A plurality of synthesized diffraction signals are extracted (744) from the synthesized image or images, and used to calculate a measurement of overlay. The computational burden is reduced compared with extracting diffraction signals from the captured images individually. The captured images may be dark-field images or pupil images, obtained using a scatterometer.
Abstract:
A method of measuring a property of a substrate, the substrate having a plurality of targets formed thereon, the method comprising: measuring N targets of the plurality of targets using an optical measurement system, where N is an integer greater than 2 and each of said N targets is measured W t times, where W t is an integer greater than 2 so as to obtain N*W t measurement values; and determining R property values using Q equations and the N*W t measurement values, where R t ; wherein the optical measurement system has at least one changeable setting and, for each of the N targets, measurement values are obtained using different setting values of at least one changeable setting.
Abstract:
Disclosed is a method of measuring a focus parameter from a focus target, and associated substrate and associated patterning device. The focus target comprises at least a first sub-target and a second sub-target, each having at least a periodic main feature, wherein a respective pitch and/or dimensional parameter of at least some sub-elements of the main feature are configured such that said first sub-target and second sub-target have a respective different best focus value; and wherein each said main feature is formed with a focus dependent center-of-mass and/or pitch. The method comprises obtaining a first measurement signal from said first sub-target and a second measurement signal from said second sub-target; determining a difference signal of said first measurement signal and second measurement signal; and determining said focus parameter from said difference signal.
Abstract:
A method for improving the yield of a lithographic process, the method comprising: determining a parameter fingerprint of a performance parameter across a substrate, the parameter fingerprint including information relating to uncertainty in the performance parameter; determining a process window fingerprint of the performance parameter across the substrate, the process window being associated with an allowable range of the performance parameter; and determining a probability metric associated with the probability of the performance parameter being outside an allowable range. Optionally a correction to the lithographic process is determined based on the probability metric.
Abstract:
A lithographic apparatus includes an illumination system configured to condition a radiation beam, a support for a patterning device, a substrate table for a substrate, a projection system, and a control system. The patterning device is capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam. The projection system is configured to project the patterned radiation beam as an image onto a target portion of the substrate along a scan path. The scan path is defined by a trajectory in a scanning direction of an exposure field of the lithographic apparatus. The control system is coupled to the support, the substrate table and the projection system for controlling an action of the support, the substrate table and the projection system, respectively. The control system is configured to correct a local distortion of the image in a region along the scan path by a temporal adjustment of the image in that region, hereby reducing the intra-field overlay errors.