Abstract:
Disclosed is a method for configuring an apparatus for providing structures to a layer on a substrate, the method comprising: obtaining first data comprising substrate specific data as measured and/or modeled before the providing of the structures to the layer on the substrate; and determining a configuration of the apparatus for at least two different control regimes based on said first data and the use of a common merit function comprising parameters associated with the at least two control regimes.
Abstract:
A method includes determining topographic information of a substrate for use in a lithographic imaging system, determining or estimating, based on the topographic information, imaging error information for a plurality of points in an image field of the lithographic imaging system, adapting a design for a patterning device based on the imaging error information. In an embodiment, a plurality of locations for metrology targets is optimized based on imaging error information for a plurality of points in an image field of a lithographic imaging system, wherein the optimizing involves minimizing a cost function that describes the imaging error information. In an embodiment, locations are weighted based on differences in imaging requirements across the image field.
Abstract:
The invention relates to an image for detection of an aerial pattern comprising spatial differences in radiation intensity in a cross section of a beam of radiation in a lithographic apparatus for exposing a substrate. The image sensor comprises a lens arranged to form a detection image of the aerial pattern and an image detector arranged to measure radiation intensities in a plurality of positions in the detection image.
Abstract:
Disclosed is a method for controlling a lithographic apparatus, and associated apparatuses. The method is configured to provide product structures to a substrate in a lithographic process and comprises determining optimization data. The optimization data comprises measured and/or simulated data of at least one performance parameter associated with the product structures and/or their arrangement which are to be applied to the substrate in the lithographic process. Substrate specific metrology data as measured and/or modeled before the providing of product structures to the substrate is determined, the substrate specific metrology data comprising metrology data relating to a characteristic of the substrate to which the structures are being applied and/or the state of the lithographic apparatus at the time that the structures are applied to the substrate. The method further includes optimizing control of the lithographic apparatus during the lithographic process based on said optimization data and the substrate specific metrology data.
Abstract:
A method, system and program for determining a fingerprint of a parameter. The method includes determining a contribution from a device out of a plurality of devices to a fingerprint of a parameter. The method comprising: obtaining parameter data and usage data, wherein the parameter data is based on measurements for multiple substrates having been processed by the plurality of devices, and the usage data indicates which of the devices out of the plurality of the devices were used in the processing of each substrate; and determining the contribution using the usage data and parameter data.
Abstract:
A method for improving the yield of a lithographic process, the method comprising: determining a parameter fingerprint of a performance parameter across a substrate, the parameter fingerprint including information relating to uncertainty in the performance parameter; determining a process window fingerprint of the performance parameter across the substrate, the process window being associated with an allowable range of the performance parameter; and determining a probability metric associated with the probability of the performance parameter being outside an allowable range. Optionally a correction to the lithographic process is determined based on the probability metric.
Abstract:
Disclosed is a method of determining a correction for measured values of radiation diffracted from a target comprising a plurality of periodic structures, subsequent to measurement of the target using measurement radiation defining a measurement field. The correction acts to correct for measurement field location dependence in the measured values. The method comprises performing a first and second measurements of the periodic structures; and determining a correction from said first measurement and said second measurement. The first measurement is performed with said target being in a normal measurement location with respect to the measurement field. The second measurement is performed with the periodic structure in a shifted location with respect to the measurement field, said shifted location comprising the location of another of said periodic structures when said target is in said normal measurement location with respect to the measurement field.
Abstract:
Described herein is a method for determining a wavefront of a patterning apparatus of a patterning process. The method includes obtaining a reference performance (e.g., a contour, EPE, CD) of a reference apparatus (e.g., a scanner), a lens model of a patterning apparatus configured to convert a wavefront parameter of a wavefront to actuator movements, and a lens fingerprint of a tuning scanner (e.g., a to-be-matched scanner). Further, the method involves determining the wavefront parameter (e.g., wavefront parameters such as tilt, offset, etc.) based on the lens fingerprint of the tuning scanner, the lens model, and a cost function, wherein the cost function is a difference between the reference performance and a tuning scanner performance.
Abstract:
A method involving determining a contribution that one or more process apparatuses make to a characteristic of a substrate after the substrate has been processed according to a patterning process by the one or more process apparatuses by removing from values of the characteristic of the substrate a contribution of a lithography apparatus to the characteristic and a contribution of one or more prelithography process apparatuses to the characteristic.
Abstract:
A lithographic process is one that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. During the lithographic process, the focus needs to be controlled. There is disclosed a method for determining a fingerprint of a performance parameter associated with a substrate, such as a focus value to be used during the lithographic process. A reference fingerprint of the performance parameter is determined for a reference substrate. A reference substrate parameter of the reference substrate is determined. A substrate parameter for a substrate, such as a substrate with product structures, is determined. Subsequently, the fingerprint of the performance parameter is determined based on the reference fingerprint, reference substrate parameter and the substrate parameter. The fingerprint may then be used to control the lithographic process.