Abstract:
Systems and methods well suited for use in catheter based tissue ablation systems employ thermocouples (80) for temperature sensing at an energy emitter site (30). The sensed temperature is used to control the energy output from the energy source to maintain tissue temperature within desired parameters. The systems combine accuracy with compact, low profile construction.
Abstract:
This invention is a system and associated method to ablate body tissue using multiple emitters (30) of ablating energy. The system and method convey ablating energy individually to each emitter (30) in a sequence of power pulses. The system and method periodically sense the temperature of each emitter (30) and compare the sensed temperatures to a desired temperature established for all emitters (30) to generate a signal individually for each emitter (30) based upon the comparison. The system and method individually vary the power pulse to each emitter (30) based upon the signal for that emitter to maintain the temperatures of all emitters essentially at the desired temperature during tissue ablation.
Abstract:
Systems and methods employ an energy emitting electrode (16) to heat tissue. The systems and methods control the application of energy to the electrode (16) using adjustments that take into account, in a non-linear fashion, changes in monitored operating conditions.
Abstract:
Multiple electrode support structures (20(4)) have asymmetric geometries, either axially, or radially, or both. The asymmetric support structures are assembled from spline elements (51-58) that extend between a distal hub (24) and a proximal base (26). In one embodiment, the spline elements (51-58) are circumferentially spaced about the distal hub (24) in a radially asymmetric fashion, creating a greater density of spline elements in one region of the structure than in another region. In the same or another embodiment, the spline elements (51-58) are preformed in an axially asymmetric fashion along their lengths, creating a different geometry in their distal regions than in their proximal regions.
Abstract:
An imaging element characterizes tissue morphology by analyzing perfusion patterns of a contrast media in tissue visualized by the imaging element, to identify infarcted tissue. In a preferred implementation, a catheter tube (12) introduced into a heart region carries the imaging element (34), as well as a support structure (20) spaced from the imaging element, which contracts endocardial tissues. The imaging element is moved as the imaging element visualizes tissue. A selected electrical event is sensed in surrounding myocardial tissue which regulates movement of the imaging element. The support element stabilizes the moving imaging element as it visualizes tissue, providing resistance to dislodgment or disorientation despite the presence of dynamic forces.
Abstract:
Systems and methods for heating body tissue places a multi-function structure (22) having an exterior wall in contact with body tissue. The structure includes an array of electrically conducting electrode segments (44) carried by the exterior wall. An electrically conductive network is coupled to the electrode segments, including at least one electrically conductive path (32) individually coupled to each electrode segment. The systems and methods operate in a first mode during which the network is electrically conditioned to individually sense at each electrode segment local electrical events in tissue, such as electrical potentials, resistivity, or impedance. The systems and methods operate in a second mode during which the network is electrically conditioned, based at least in part upon local electrical events sensed by the electrode segments, to couple at least two electrode segments together to simultaneously trasmit electrical energy to heat or ablate a region of body tissue.
Abstract:
A probe (18) or cardiac diagnosis and/or treatment has a catheter tube (16). The distal end of the catheter tube carries first and second electrode elements (26, 88). The probe includes a mechanism (92) for steering the first electrode element relative to the second electrode element in multiple directions.