Abstract:
A substrate for an optical device includes an optical device substrate including a plurality of conductive plates elongated along a length direction, wherein side surfaces of the conductive plates are bonded to each other with insulators interposed therebetween, the insulators being respectively formed on the side surfaces. A groove having a predetermined depth for preventing burrs is formed in a lower surface of the optical device substrate at each point where a cutting line is crossed with one of the insulators when the optical device substrate is cut in a length direction and in a vertical direction, the groove being formed in such a way that said one of the insulators is exposed to an inside of the groove.
Abstract:
A base substrate which prevents burrs generated during the cutting process includes: multiple conductive layers stacked in one direction with respect to the base substrate; at least one insulation layer being alternately stacked with said conductive layers and electrically separating said conductive layers; and a through-hole penetrating said base substrate covering said insulation layer at the contact region where said cut surface and said insulation layer meet during the cutting of said base substrate in accordance with a predetermined region of the chip substrate. A method of manufacturing the base substrate includes alternately stacking conductive layers and insulation layers and forming a through-hole.
Abstract:
Proposed is a multilayer wiring substrate having excellent joining strength, a method of manufacturing the multilayer wiring substrate, and a probe card having the multilayer wiring substrate.
Abstract:
Proposed are a manufacturing method of an anodic oxide film structure, and an anodic oxide film structure. More particularly, proposed are a manufacturing method of an anodic oxide film structure, and an anodic oxide film structure, wherein production yield of the entire product can be improved by repairing a defective region to be made normal.
Abstract:
Disclosed are a micro LED group substrate provided with a plurality of micro LEDs, a method of manufacturing the same, a micro LED display panel, and a method of manufacturing the same. More particularly, disclosed are a micro LED group substrate provided with a plurality of micro LEDs, a method of manufacturing the same, a micro LED display panel, and a method of manufacturing the same, wherein the need for a micro LED replacement process is eliminated.
Abstract:
Proposed is an anodic oxide film structure that includes an anodic oxide film sheet and has high strength, chemical resistance and corrosion resistance.
Abstract:
Provided is a UV sterilizer including an illumination unit, a cover that has an open hole in an upper surface thereof and supports the illumination unit, and a body that is provided underneath the cover and secures an illumination distance between the illumination unit and an illumination target object. The body is composed of a first body and a second body into which the first body is inserted. The first body and the second body are separably combined with each other.
Abstract:
The present invention relates generally to an optical device package on which an optical device is mounted and, more particularly, to an optical device package that is configured such that a unit substrate of the optical device package comes into surface contact with a curved surface of a light transmission member.
Abstract:
Proposed are a laminated anodic aluminum oxide structure in which a plurality of anodic aluminum oxide films are stacked, a guide plate of a probe card using the same, and a probe card having the same. More particularly, proposed are a laminated anodic aluminum oxide structure with a high degree of surface strength, a guide plate of a probe card using the same, and a probe card having the same.