Abstract:
A method of quantizing a floating point machine learning network to obtain a fixed point machine learning network using a quantizer may include selecting at least one moment of an input distribution of the floating point machine learning network. The method may also include determining quantizer parameters for quantizing values of the floating point machine learning network based at least in part on the at least one selected moment of the input distribution of the floating point machine learning network to obtain corresponding values of the fixed point machine learning network.
Abstract:
A method for selecting bit widths for a fixed point machine learning model includes evaluating a sensitivity of model accuracy to bit widths at each computational stage of the model. The method also includes selecting a bit width for parameters, and/or intermediate calculations in the computational stages of the mode. The bit width for the parameters and the bit width for the intermediate calculations may be different. The selected bit width may be determined based on the sensitivity evaluation.
Abstract:
Systems and methodologies are described that enable serving cell selection in a wireless network with a multiple antenna repeater operable to support MIMO communications. In one example, a repeater using orthogonal frequency division multiplexing on the downlink can be equipped to receive, by one or more receive antennas, one or more signals using one or more radio frequency (RF) isolation schemes. The repeater can further be equipped to amplify and delay the one or more signals using one or more combination schemes. Moreover, the repeater can be equipped to transmit, by one or more transmit antennas, the amplified and delayed one or more signals, wherein at least one of the one or more receive antennas or the one or more transmit antennas includes two or more antennas.
Abstract:
Methods and apparatuses are provided that facilitate associating with relays in a wireless network. A device can select whether to utilize relay assistance where present based at least in part on measuring one or more determined or projected parameters related to the relay. Where utilizing a relay results in user-plane data channel conditions above a threshold level and control channel conditions below a threshold level, a serving base station can determine whether to employ another base station to serve the device, jointly serve a relay with an additional base station, and/or the like.
Abstract:
Techniques for sending signaling messages with beacon signals in a wireless communication network are described. In one design, a transmitter station may map a signaling message (e.g., a reduce interference request) to multiple code symbols. The transmitter station may select multiple resource elements from among a plurality of resource elements based on the multiple code symbols. In one design, each code symbol may be sent across frequency by selecting one of multiple subcarriers in one symbol period (500). In another design, each code symbol may be sent across time by selecting one of multiple symbol periods on one subcarrier (700). The transmitter station may generate a beacon signal having transmit power on the selected resource elements and no transmit power on remaining resource elements. The transmitter station may send the beacon signal to at least one receiver station.
Abstract:
A method of detecting unknown classes is presented and includes generating a first classifier for multiple first classes. In one configuration, an output of the first classifier has a dimension of at least two. The method also includes designing a second classifier to receive the output of the first classifier to decide whether input data belongs to the multiple first classes or at least one second class.
Abstract:
Providing for fair resource sharing among wireless nodes in a wireless communication environment is described herein. By way of example, fairness can comprise establishing a set of resource sharing credits for wireless nodes. By expending credits, a node can borrow a resource of another node, to enable or enhance operation of the borrowing node. Credits for the borrowing node are decreased based on consumption of a shared resource, or credits for the lending node are increased based on such consumption, or both. Once an amount of credits expires, a node can be restricted from borrowing further resources until enough resources are lent to build up a suitable amount of credits. Accordingly, fairness can comprise correlating shared resource consumption with shared resource provisioning, to encourage participation in cooperative wireless communications.
Abstract:
Systems and methodologies are described that facilitate providing opportunistic relay node communication based on scheduling of other communications in a wireless network. In particular, a relay node can maintain a backhaul link with an access point and an access link with a mobile device to facilitate communicating information therebetween. Time slots during which the backhaul link is active can be determined and avoided during scheduling access link communications with the mobile device. Furthermore, resource assignments from the access point to the mobile device can be monitored and decoded such that time slots associated therewith can also be determined and avoided. Thus, the relay node can communicate with mobile devices in time slots where the backhaul link is inactive and/or the mobile devices are not occupied communicating directly with the access point.
Abstract:
Methods, apparatuses, and computer program products are disclosed for encoding/decoding a wireless control signal. For encoding, control bits are received and encoded with a first error control code so as to create a first set of encoded bits. The encoded bits are then encoded with a second error control code so as to create a second set of encoded bits, which are modulated as beacon tones and subsequently transmitted. For decoding, beacon tones corresponding to a set of control bits are received and subsequently demodulated so as to ascertain a set of demodulated bits. The demodulated bits are then decoded with a decoder so as to ascertain a set of decoded bits. The decoded bits are then decoded with a second decoder so as to ascertain a second set of decoded bits, which includes the set of control bits.